sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(44100, base_ring=CyclotomicField(420))
M = H._module
chi = DirichletCharacter(H, M([210,140,189,290]))
pari:[g,chi] = znchar(Mod(10687,44100))
Modulus: | \(44100\) | |
Conductor: | \(44100\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(420\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{44100}(103,\cdot)\)
\(\chi_{44100}(367,\cdot)\)
\(\chi_{44100}(1123,\cdot)\)
\(\chi_{44100}(1363,\cdot)\)
\(\chi_{44100}(1627,\cdot)\)
\(\chi_{44100}(1867,\cdot)\)
\(\chi_{44100}(2623,\cdot)\)
\(\chi_{44100}(2887,\cdot)\)
\(\chi_{44100}(3127,\cdot)\)
\(\chi_{44100}(3883,\cdot)\)
\(\chi_{44100}(4387,\cdot)\)
\(\chi_{44100}(4903,\cdot)\)
\(\chi_{44100}(5647,\cdot)\)
\(\chi_{44100}(6163,\cdot)\)
\(\chi_{44100}(6403,\cdot)\)
\(\chi_{44100}(6667,\cdot)\)
\(\chi_{44100}(7423,\cdot)\)
\(\chi_{44100}(7927,\cdot)\)
\(\chi_{44100}(8167,\cdot)\)
\(\chi_{44100}(8683,\cdot)\)
\(\chi_{44100}(8923,\cdot)\)
\(\chi_{44100}(9187,\cdot)\)
\(\chi_{44100}(10183,\cdot)\)
\(\chi_{44100}(10447,\cdot)\)
\(\chi_{44100}(10687,\cdot)\)
\(\chi_{44100}(11947,\cdot)\)
\(\chi_{44100}(12463,\cdot)\)
\(\chi_{44100}(12703,\cdot)\)
\(\chi_{44100}(13723,\cdot)\)
\(\chi_{44100}(13963,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((22051,34301,15877,9901)\) → \((-1,e\left(\frac{1}{3}\right),e\left(\frac{9}{20}\right),e\left(\frac{29}{42}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 44100 }(10687, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{137}{210}\right)\) | \(e\left(\frac{1}{420}\right)\) | \(e\left(\frac{47}{420}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{149}{420}\right)\) | \(e\left(\frac{139}{210}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{61}{420}\right)\) | \(e\left(\frac{173}{210}\right)\) | \(e\left(\frac{61}{84}\right)\) |
sage:chi.jacobi_sum(n)