sage: H = DirichletGroup(43904)
pari: g = idealstar(,43904,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 18816 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{4704}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{43904}(17151,\cdot)$, $\chi_{43904}(9605,\cdot)$, $\chi_{43904}(17153,\cdot)$ |
First 32 of 18816 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(23\) | \(25\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{43904}(1,\cdot)\) | 43904.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{43904}(3,\cdot)\) | 43904.fk | 4704 | yes | \(1\) | \(1\) | \(e\left(\frac{3691}{4704}\right)\) | \(e\left(\frac{905}{4704}\right)\) | \(e\left(\frac{1339}{2352}\right)\) | \(e\left(\frac{829}{4704}\right)\) | \(e\left(\frac{589}{1568}\right)\) | \(e\left(\frac{383}{392}\right)\) | \(e\left(\frac{835}{1176}\right)\) | \(e\left(\frac{47}{96}\right)\) | \(e\left(\frac{871}{2352}\right)\) | \(e\left(\frac{905}{2352}\right)\) |
\(\chi_{43904}(5,\cdot)\) | 43904.fl | 4704 | yes | \(-1\) | \(1\) | \(e\left(\frac{905}{4704}\right)\) | \(e\left(\frac{4195}{4704}\right)\) | \(e\left(\frac{905}{2352}\right)\) | \(e\left(\frac{815}{4704}\right)\) | \(e\left(\frac{911}{1568}\right)\) | \(e\left(\frac{33}{392}\right)\) | \(e\left(\frac{401}{1176}\right)\) | \(e\left(\frac{85}{96}\right)\) | \(e\left(\frac{1445}{2352}\right)\) | \(e\left(\frac{1843}{2352}\right)\) |
\(\chi_{43904}(9,\cdot)\) | 43904.fh | 2352 | no | \(1\) | \(1\) | \(e\left(\frac{1339}{2352}\right)\) | \(e\left(\frac{905}{2352}\right)\) | \(e\left(\frac{163}{1176}\right)\) | \(e\left(\frac{829}{2352}\right)\) | \(e\left(\frac{589}{784}\right)\) | \(e\left(\frac{187}{196}\right)\) | \(e\left(\frac{247}{588}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{871}{1176}\right)\) | \(e\left(\frac{905}{1176}\right)\) |
\(\chi_{43904}(11,\cdot)\) | 43904.fm | 4704 | yes | \(-1\) | \(1\) | \(e\left(\frac{829}{4704}\right)\) | \(e\left(\frac{815}{4704}\right)\) | \(e\left(\frac{829}{2352}\right)\) | \(e\left(\frac{2059}{4704}\right)\) | \(e\left(\frac{747}{1568}\right)\) | \(e\left(\frac{137}{392}\right)\) | \(e\left(\frac{73}{1176}\right)\) | \(e\left(\frac{89}{96}\right)\) | \(e\left(\frac{1681}{2352}\right)\) | \(e\left(\frac{815}{2352}\right)\) |
\(\chi_{43904}(13,\cdot)\) | 43904.ff | 1568 | yes | \(-1\) | \(1\) | \(e\left(\frac{589}{1568}\right)\) | \(e\left(\frac{911}{1568}\right)\) | \(e\left(\frac{589}{784}\right)\) | \(e\left(\frac{747}{1568}\right)\) | \(e\left(\frac{481}{1568}\right)\) | \(e\left(\frac{375}{392}\right)\) | \(e\left(\frac{141}{392}\right)\) | \(e\left(\frac{9}{32}\right)\) | \(e\left(\frac{425}{784}\right)\) | \(e\left(\frac{127}{784}\right)\) |
\(\chi_{43904}(15,\cdot)\) | 43904.ek | 392 | no | \(-1\) | \(1\) | \(e\left(\frac{383}{392}\right)\) | \(e\left(\frac{33}{392}\right)\) | \(e\left(\frac{187}{196}\right)\) | \(e\left(\frac{137}{392}\right)\) | \(e\left(\frac{375}{392}\right)\) | \(e\left(\frac{3}{49}\right)\) | \(e\left(\frac{5}{98}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{193}{196}\right)\) | \(e\left(\frac{33}{196}\right)\) |
\(\chi_{43904}(17,\cdot)\) | 43904.ey | 1176 | no | \(-1\) | \(1\) | \(e\left(\frac{835}{1176}\right)\) | \(e\left(\frac{401}{1176}\right)\) | \(e\left(\frac{247}{588}\right)\) | \(e\left(\frac{73}{1176}\right)\) | \(e\left(\frac{141}{392}\right)\) | \(e\left(\frac{5}{98}\right)\) | \(e\left(\frac{92}{147}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{115}{588}\right)\) | \(e\left(\frac{401}{588}\right)\) |
\(\chi_{43904}(19,\cdot)\) | 43904.cw | 96 | no | \(1\) | \(1\) | \(e\left(\frac{47}{96}\right)\) | \(e\left(\frac{85}{96}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{89}{96}\right)\) | \(e\left(\frac{9}{32}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{19}{96}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{37}{48}\right)\) |
\(\chi_{43904}(23,\cdot)\) | 43904.fj | 2352 | no | \(-1\) | \(1\) | \(e\left(\frac{871}{2352}\right)\) | \(e\left(\frac{1445}{2352}\right)\) | \(e\left(\frac{871}{1176}\right)\) | \(e\left(\frac{1681}{2352}\right)\) | \(e\left(\frac{425}{784}\right)\) | \(e\left(\frac{193}{196}\right)\) | \(e\left(\frac{115}{588}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{127}{1176}\right)\) | \(e\left(\frac{269}{1176}\right)\) |
\(\chi_{43904}(25,\cdot)\) | 43904.fh | 2352 | no | \(1\) | \(1\) | \(e\left(\frac{905}{2352}\right)\) | \(e\left(\frac{1843}{2352}\right)\) | \(e\left(\frac{905}{1176}\right)\) | \(e\left(\frac{815}{2352}\right)\) | \(e\left(\frac{127}{784}\right)\) | \(e\left(\frac{33}{196}\right)\) | \(e\left(\frac{401}{588}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{269}{1176}\right)\) | \(e\left(\frac{667}{1176}\right)\) |
\(\chi_{43904}(27,\cdot)\) | 43904.fe | 1568 | yes | \(1\) | \(1\) | \(e\left(\frac{555}{1568}\right)\) | \(e\left(\frac{905}{1568}\right)\) | \(e\left(\frac{555}{784}\right)\) | \(e\left(\frac{829}{1568}\right)\) | \(e\left(\frac{199}{1568}\right)\) | \(e\left(\frac{365}{392}\right)\) | \(e\left(\frac{51}{392}\right)\) | \(e\left(\frac{15}{32}\right)\) | \(e\left(\frac{87}{784}\right)\) | \(e\left(\frac{121}{784}\right)\) |
\(\chi_{43904}(29,\cdot)\) | 43904.fd | 1568 | yes | \(1\) | \(1\) | \(e\left(\frac{481}{1568}\right)\) | \(e\left(\frac{523}{1568}\right)\) | \(e\left(\frac{481}{784}\right)\) | \(e\left(\frac{39}{1568}\right)\) | \(e\left(\frac{1061}{1568}\right)\) | \(e\left(\frac{251}{392}\right)\) | \(e\left(\frac{5}{392}\right)\) | \(e\left(\frac{13}{32}\right)\) | \(e\left(\frac{781}{784}\right)\) | \(e\left(\frac{523}{784}\right)\) |
\(\chi_{43904}(31,\cdot)\) | 43904.ct | 84 | no | \(1\) | \(1\) | \(e\left(\frac{59}{84}\right)\) | \(e\left(\frac{31}{84}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{71}{84}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{31}{42}\right)\) |
\(\chi_{43904}(33,\cdot)\) | 43904.en | 588 | no | \(-1\) | \(1\) | \(e\left(\frac{565}{588}\right)\) | \(e\left(\frac{215}{588}\right)\) | \(e\left(\frac{271}{294}\right)\) | \(e\left(\frac{361}{588}\right)\) | \(e\left(\frac{167}{196}\right)\) | \(e\left(\frac{16}{49}\right)\) | \(e\left(\frac{227}{294}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{25}{294}\right)\) | \(e\left(\frac{215}{294}\right)\) |
\(\chi_{43904}(37,\cdot)\) | 43904.fn | 4704 | yes | \(1\) | \(1\) | \(e\left(\frac{2801}{4704}\right)\) | \(e\left(\frac{379}{4704}\right)\) | \(e\left(\frac{449}{2352}\right)\) | \(e\left(\frac{3575}{4704}\right)\) | \(e\left(\frac{711}{1568}\right)\) | \(e\left(\frac{265}{392}\right)\) | \(e\left(\frac{197}{1176}\right)\) | \(e\left(\frac{61}{96}\right)\) | \(e\left(\frac{509}{2352}\right)\) | \(e\left(\frac{379}{2352}\right)\) |
\(\chi_{43904}(39,\cdot)\) | 43904.fj | 2352 | no | \(-1\) | \(1\) | \(e\left(\frac{377}{2352}\right)\) | \(e\left(\frac{1819}{2352}\right)\) | \(e\left(\frac{377}{1176}\right)\) | \(e\left(\frac{1535}{2352}\right)\) | \(e\left(\frac{535}{784}\right)\) | \(e\left(\frac{183}{196}\right)\) | \(e\left(\frac{41}{588}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{1073}{1176}\right)\) | \(e\left(\frac{643}{1176}\right)\) |
\(\chi_{43904}(41,\cdot)\) | 43904.eu | 784 | no | \(-1\) | \(1\) | \(e\left(\frac{341}{784}\right)\) | \(e\left(\frac{775}{784}\right)\) | \(e\left(\frac{341}{392}\right)\) | \(e\left(\frac{123}{784}\right)\) | \(e\left(\frac{361}{784}\right)\) | \(e\left(\frac{83}{196}\right)\) | \(e\left(\frac{159}{196}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{81}{392}\right)\) | \(e\left(\frac{383}{392}\right)\) |
\(\chi_{43904}(43,\cdot)\) | 43904.fc | 1568 | yes | \(-1\) | \(1\) | \(e\left(\frac{375}{1568}\right)\) | \(e\left(\frac{781}{1568}\right)\) | \(e\left(\frac{375}{784}\right)\) | \(e\left(\frac{1217}{1568}\right)\) | \(e\left(\frac{643}{1568}\right)\) | \(e\left(\frac{289}{392}\right)\) | \(e\left(\frac{347}{392}\right)\) | \(e\left(\frac{11}{32}\right)\) | \(e\left(\frac{419}{784}\right)\) | \(e\left(\frac{781}{784}\right)\) |
\(\chi_{43904}(45,\cdot)\) | 43904.fl | 4704 | yes | \(-1\) | \(1\) | \(e\left(\frac{3583}{4704}\right)\) | \(e\left(\frac{1301}{4704}\right)\) | \(e\left(\frac{1231}{2352}\right)\) | \(e\left(\frac{2473}{4704}\right)\) | \(e\left(\frac{521}{1568}\right)\) | \(e\left(\frac{15}{392}\right)\) | \(e\left(\frac{895}{1176}\right)\) | \(e\left(\frac{83}{96}\right)\) | \(e\left(\frac{835}{2352}\right)\) | \(e\left(\frac{1301}{2352}\right)\) |
\(\chi_{43904}(47,\cdot)\) | 43904.fb | 1176 | no | \(1\) | \(1\) | \(e\left(\frac{419}{1176}\right)\) | \(e\left(\frac{685}{1176}\right)\) | \(e\left(\frac{419}{588}\right)\) | \(e\left(\frac{569}{1176}\right)\) | \(e\left(\frac{17}{392}\right)\) | \(e\left(\frac{46}{49}\right)\) | \(e\left(\frac{115}{147}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{401}{588}\right)\) | \(e\left(\frac{97}{588}\right)\) |
\(\chi_{43904}(51,\cdot)\) | 43904.fm | 4704 | yes | \(-1\) | \(1\) | \(e\left(\frac{2327}{4704}\right)\) | \(e\left(\frac{2509}{4704}\right)\) | \(e\left(\frac{2327}{2352}\right)\) | \(e\left(\frac{1121}{4704}\right)\) | \(e\left(\frac{1153}{1568}\right)\) | \(e\left(\frac{11}{392}\right)\) | \(e\left(\frac{395}{1176}\right)\) | \(e\left(\frac{43}{96}\right)\) | \(e\left(\frac{1331}{2352}\right)\) | \(e\left(\frac{157}{2352}\right)\) |
\(\chi_{43904}(53,\cdot)\) | 43904.fn | 4704 | yes | \(1\) | \(1\) | \(e\left(\frac{2365}{4704}\right)\) | \(e\left(\frac{671}{4704}\right)\) | \(e\left(\frac{13}{2352}\right)\) | \(e\left(\frac{1675}{4704}\right)\) | \(e\left(\frac{59}{1568}\right)\) | \(e\left(\frac{253}{392}\right)\) | \(e\left(\frac{265}{1176}\right)\) | \(e\left(\frac{89}{96}\right)\) | \(e\left(\frac{1801}{2352}\right)\) | \(e\left(\frac{671}{2352}\right)\) |
\(\chi_{43904}(55,\cdot)\) | 43904.ew | 784 | no | \(1\) | \(1\) | \(e\left(\frac{289}{784}\right)\) | \(e\left(\frac{51}{784}\right)\) | \(e\left(\frac{289}{392}\right)\) | \(e\left(\frac{479}{784}\right)\) | \(e\left(\frac{45}{784}\right)\) | \(e\left(\frac{85}{196}\right)\) | \(e\left(\frac{79}{196}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{129}{392}\right)\) | \(e\left(\frac{51}{392}\right)\) |
\(\chi_{43904}(57,\cdot)\) | 43904.ex | 784 | no | \(1\) | \(1\) | \(e\left(\frac{215}{784}\right)\) | \(e\left(\frac{61}{784}\right)\) | \(e\left(\frac{215}{392}\right)\) | \(e\left(\frac{81}{784}\right)\) | \(e\left(\frac{515}{784}\right)\) | \(e\left(\frac{69}{196}\right)\) | \(e\left(\frac{131}{196}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{235}{392}\right)\) | \(e\left(\frac{61}{392}\right)\) |
\(\chi_{43904}(59,\cdot)\) | 43904.fk | 4704 | yes | \(1\) | \(1\) | \(e\left(\frac{649}{4704}\right)\) | \(e\left(\frac{3827}{4704}\right)\) | \(e\left(\frac{649}{2352}\right)\) | \(e\left(\frac{4015}{4704}\right)\) | \(e\left(\frac{895}{1568}\right)\) | \(e\left(\frac{373}{392}\right)\) | \(e\left(\frac{1153}{1176}\right)\) | \(e\left(\frac{53}{96}\right)\) | \(e\left(\frac{445}{2352}\right)\) | \(e\left(\frac{1475}{2352}\right)\) |
\(\chi_{43904}(61,\cdot)\) | 43904.fl | 4704 | yes | \(-1\) | \(1\) | \(e\left(\frac{3179}{4704}\right)\) | \(e\left(\frac{2521}{4704}\right)\) | \(e\left(\frac{827}{2352}\right)\) | \(e\left(\frac{2525}{4704}\right)\) | \(e\left(\frac{1341}{1568}\right)\) | \(e\left(\frac{83}{392}\right)\) | \(e\left(\frac{1163}{1176}\right)\) | \(e\left(\frac{79}{96}\right)\) | \(e\left(\frac{47}{2352}\right)\) | \(e\left(\frac{169}{2352}\right)\) |
\(\chi_{43904}(65,\cdot)\) | 43904.ec | 294 | no | \(1\) | \(1\) | \(e\left(\frac{167}{294}\right)\) | \(e\left(\frac{139}{294}\right)\) | \(e\left(\frac{20}{147}\right)\) | \(e\left(\frac{191}{294}\right)\) | \(e\left(\frac{87}{98}\right)\) | \(e\left(\frac{2}{49}\right)\) | \(e\left(\frac{103}{147}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{23}{147}\right)\) | \(e\left(\frac{139}{147}\right)\) |
\(\chi_{43904}(67,\cdot)\) | 43904.es | 672 | no | \(-1\) | \(1\) | \(e\left(\frac{445}{672}\right)\) | \(e\left(\frac{431}{672}\right)\) | \(e\left(\frac{109}{336}\right)\) | \(e\left(\frac{139}{672}\right)\) | \(e\left(\frac{107}{224}\right)\) | \(e\left(\frac{17}{56}\right)\) | \(e\left(\frac{25}{168}\right)\) | \(e\left(\frac{47}{96}\right)\) | \(e\left(\frac{97}{336}\right)\) | \(e\left(\frac{95}{336}\right)\) |
\(\chi_{43904}(69,\cdot)\) | 43904.ff | 1568 | yes | \(-1\) | \(1\) | \(e\left(\frac{243}{1568}\right)\) | \(e\left(\frac{1265}{1568}\right)\) | \(e\left(\frac{243}{784}\right)\) | \(e\left(\frac{1397}{1568}\right)\) | \(e\left(\frac{1439}{1568}\right)\) | \(e\left(\frac{377}{392}\right)\) | \(e\left(\frac{355}{392}\right)\) | \(e\left(\frac{23}{32}\right)\) | \(e\left(\frac{375}{784}\right)\) | \(e\left(\frac{481}{784}\right)\) |
\(\chi_{43904}(71,\cdot)\) | 43904.ev | 784 | no | \(-1\) | \(1\) | \(e\left(\frac{127}{784}\right)\) | \(e\left(\frac{253}{784}\right)\) | \(e\left(\frac{127}{392}\right)\) | \(e\left(\frac{201}{784}\right)\) | \(e\left(\frac{131}{784}\right)\) | \(e\left(\frac{95}{196}\right)\) | \(e\left(\frac{71}{196}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{271}{392}\right)\) | \(e\left(\frac{253}{392}\right)\) |
\(\chi_{43904}(73,\cdot)\) | 43904.fi | 2352 | no | \(-1\) | \(1\) | \(e\left(\frac{779}{2352}\right)\) | \(e\left(\frac{1129}{2352}\right)\) | \(e\left(\frac{779}{1176}\right)\) | \(e\left(\frac{773}{2352}\right)\) | \(e\left(\frac{701}{784}\right)\) | \(e\left(\frac{159}{196}\right)\) | \(e\left(\frac{569}{588}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{815}{1176}\right)\) | \(e\left(\frac{1129}{1176}\right)\) |