sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4356, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([33,22,51]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(3343,4356))
         
     
    
  
   | Modulus: |  \(4356\) |   |  
   | Conductor: |  \(4356\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(66\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{4356}(43,\cdot)\)
  \(\chi_{4356}(175,\cdot)\)
  \(\chi_{4356}(439,\cdot)\)
  \(\chi_{4356}(571,\cdot)\)
  \(\chi_{4356}(835,\cdot)\)
  \(\chi_{4356}(1231,\cdot)\)
  \(\chi_{4356}(1363,\cdot)\)
  \(\chi_{4356}(1627,\cdot)\)
  \(\chi_{4356}(1759,\cdot)\)
  \(\chi_{4356}(2023,\cdot)\)
  \(\chi_{4356}(2155,\cdot)\)
  \(\chi_{4356}(2551,\cdot)\)
  \(\chi_{4356}(2815,\cdot)\)
  \(\chi_{4356}(2947,\cdot)\)
  \(\chi_{4356}(3211,\cdot)\)
  \(\chi_{4356}(3343,\cdot)\)
  \(\chi_{4356}(3607,\cdot)\)
  \(\chi_{4356}(3739,\cdot)\)
  \(\chi_{4356}(4003,\cdot)\)
  \(\chi_{4356}(4135,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((2179,1937,1333)\) → \((-1,e\left(\frac{1}{3}\right),e\left(\frac{17}{22}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(5\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |       
    
    
      | \( \chi_{ 4356 }(3343, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{28}{33}\right)\) | \(e\left(\frac{8}{33}\right)\) | \(e\left(\frac{47}{66}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{17}{66}\right)\) | \(e\left(\frac{23}{33}\right)\) | \(e\left(\frac{31}{66}\right)\) | \(e\left(\frac{41}{66}\right)\) | \(e\left(\frac{1}{11}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)