Properties

Label 4332.3383
Modulus $4332$
Conductor $4332$
Order $38$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4332, base_ring=CyclotomicField(38)) M = H._module chi = DirichletCharacter(H, M([19,19,30]))
 
Copy content pari:[g,chi] = znchar(Mod(3383,4332))
 

Basic properties

Modulus: \(4332\)
Conductor: \(4332\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(38\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4332.be

\(\chi_{4332}(191,\cdot)\) \(\chi_{4332}(419,\cdot)\) \(\chi_{4332}(647,\cdot)\) \(\chi_{4332}(875,\cdot)\) \(\chi_{4332}(1103,\cdot)\) \(\chi_{4332}(1331,\cdot)\) \(\chi_{4332}(1559,\cdot)\) \(\chi_{4332}(1787,\cdot)\) \(\chi_{4332}(2015,\cdot)\) \(\chi_{4332}(2243,\cdot)\) \(\chi_{4332}(2471,\cdot)\) \(\chi_{4332}(2699,\cdot)\) \(\chi_{4332}(2927,\cdot)\) \(\chi_{4332}(3155,\cdot)\) \(\chi_{4332}(3383,\cdot)\) \(\chi_{4332}(3839,\cdot)\) \(\chi_{4332}(4067,\cdot)\) \(\chi_{4332}(4295,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{19})\)
Fixed field: Number field defined by a degree 38 polynomial

Values on generators

\((2167,1445,3973)\) → \((-1,-1,e\left(\frac{15}{19}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 4332 }(3383, a) \) \(1\)\(1\)\(e\left(\frac{25}{38}\right)\)\(e\left(\frac{35}{38}\right)\)\(e\left(\frac{10}{19}\right)\)\(e\left(\frac{14}{19}\right)\)\(e\left(\frac{35}{38}\right)\)\(e\left(\frac{5}{19}\right)\)\(e\left(\frac{6}{19}\right)\)\(e\left(\frac{35}{38}\right)\)\(e\left(\frac{27}{38}\right)\)\(e\left(\frac{11}{19}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4332 }(3383,a) \;\) at \(\;a = \) e.g. 2