Properties

Label 4256.jv
Modulus $4256$
Conductor $4256$
Order $72$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4256, base_ring=CyclotomicField(72))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,27,24,32]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(541,4256))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4256\)
Conductor: \(4256\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(72\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{72})$
Fixed field: Number field defined by a degree 72 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(9\) \(11\) \(13\) \(15\) \(17\) \(23\) \(25\) \(27\)
\(\chi_{4256}(541,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{17}{24}\right)\)
\(\chi_{4256}(613,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{19}{24}\right)\)
\(\chi_{4256}(709,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{11}{24}\right)\)
\(\chi_{4256}(821,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{23}{24}\right)\)
\(\chi_{4256}(1005,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{13}{24}\right)\)
\(\chi_{4256}(1061,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{19}{24}\right)\)
\(\chi_{4256}(1605,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{11}{24}\right)\)
\(\chi_{4256}(1677,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{13}{24}\right)\)
\(\chi_{4256}(1773,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{5}{24}\right)\)
\(\chi_{4256}(1885,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{17}{24}\right)\)
\(\chi_{4256}(2069,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{7}{24}\right)\)
\(\chi_{4256}(2125,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{13}{24}\right)\)
\(\chi_{4256}(2669,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{5}{24}\right)\)
\(\chi_{4256}(2741,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{7}{24}\right)\)
\(\chi_{4256}(2837,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{23}{24}\right)\)
\(\chi_{4256}(2949,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{11}{24}\right)\)
\(\chi_{4256}(3133,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{24}\right)\)
\(\chi_{4256}(3189,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{7}{24}\right)\)
\(\chi_{4256}(3733,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{23}{24}\right)\)
\(\chi_{4256}(3805,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{1}{24}\right)\)
\(\chi_{4256}(3901,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{17}{24}\right)\)
\(\chi_{4256}(4013,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{5}{24}\right)\)
\(\chi_{4256}(4197,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{19}{24}\right)\)
\(\chi_{4256}(4253,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{24}\right)\)