sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4256, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([9,0,12,1]))
pari:[g,chi] = znchar(Mod(2111,4256))
\(\chi_{4256}(991,\cdot)\)
\(\chi_{4256}(1439,\cdot)\)
\(\chi_{4256}(1535,\cdot)\)
\(\chi_{4256}(2111,\cdot)\)
\(\chi_{4256}(2879,\cdot)\)
\(\chi_{4256}(3775,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((799,2661,3041,3137)\) → \((-1,1,e\left(\frac{2}{3}\right),e\left(\frac{1}{18}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
| \( \chi_{ 4256 }(2111, a) \) |
\(1\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) |
sage:chi.jacobi_sum(n)