sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4256, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([6,3,4,2]))
pari:[g,chi] = znchar(Mod(1927,4256))
\(\chi_{4256}(487,\cdot)\)
\(\chi_{4256}(1927,\cdot)\)
\(\chi_{4256}(2615,\cdot)\)
\(\chi_{4256}(4055,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((799,2661,3041,3137)\) → \((-1,i,e\left(\frac{1}{3}\right),e\left(\frac{1}{6}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
| \( \chi_{ 4256 }(1927, a) \) |
\(1\) | \(1\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(-1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(i\) |
sage:chi.jacobi_sum(n)