![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(425, base_ring=CyclotomicField(80))
M = H._module
chi = DirichletCharacter(H, M([76,25]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(425, base_ring=CyclotomicField(80))
M = H._module
chi = DirichletCharacter(H, M([76,25]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(413,425))
        pari:[g,chi] = znchar(Mod(413,425))
         
     
    
  
   | Modulus: | \(425\) |  | 
   | Conductor: | \(425\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(80\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{425}(3,\cdot)\)
  \(\chi_{425}(27,\cdot)\)
  \(\chi_{425}(48,\cdot)\)
  \(\chi_{425}(62,\cdot)\)
  \(\chi_{425}(63,\cdot)\)
  \(\chi_{425}(73,\cdot)\)
  \(\chi_{425}(88,\cdot)\)
  \(\chi_{425}(92,\cdot)\)
  \(\chi_{425}(112,\cdot)\)
  \(\chi_{425}(133,\cdot)\)
  \(\chi_{425}(142,\cdot)\)
  \(\chi_{425}(147,\cdot)\)
  \(\chi_{425}(148,\cdot)\)
  \(\chi_{425}(158,\cdot)\)
  \(\chi_{425}(173,\cdot)\)
  \(\chi_{425}(177,\cdot)\)
  \(\chi_{425}(197,\cdot)\)
  \(\chi_{425}(227,\cdot)\)
  \(\chi_{425}(233,\cdot)\)
  \(\chi_{425}(258,\cdot)\)
  \(\chi_{425}(262,\cdot)\)
  \(\chi_{425}(303,\cdot)\)
  \(\chi_{425}(312,\cdot)\)
  \(\chi_{425}(317,\cdot)\)
  \(\chi_{425}(328,\cdot)\)
  \(\chi_{425}(347,\cdot)\)
  \(\chi_{425}(367,\cdot)\)
  \(\chi_{425}(388,\cdot)\)
  \(\chi_{425}(397,\cdot)\)
  \(\chi_{425}(402,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((52,326)\) → \((e\left(\frac{19}{20}\right),e\left(\frac{5}{16}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | 
    
    
      | \( \chi_{ 425 }(413, a) \) | \(1\) | \(1\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{77}{80}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{23}{80}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{31}{80}\right)\) | \(e\left(\frac{49}{80}\right)\) | \(e\left(\frac{3}{10}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.gauss_sum(a)
        sage:chi.gauss_sum(a)
         
     
    
    
        ![Copy content]() pari:znchargauss(g,chi,a)
        pari:znchargauss(g,chi,a)
         
     
    
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.kloosterman_sum(a,b)
        sage:chi.kloosterman_sum(a,b)