Properties

Label 425.27
Modulus $425$
Conductor $425$
Order $80$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(80)) M = H._module chi = DirichletCharacter(H, M([4,15]))
 
Copy content pari:[g,chi] = znchar(Mod(27,425))
 

Basic properties

Modulus: \(425\)
Conductor: \(425\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(80\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 425.bj

\(\chi_{425}(3,\cdot)\) \(\chi_{425}(27,\cdot)\) \(\chi_{425}(48,\cdot)\) \(\chi_{425}(62,\cdot)\) \(\chi_{425}(63,\cdot)\) \(\chi_{425}(73,\cdot)\) \(\chi_{425}(88,\cdot)\) \(\chi_{425}(92,\cdot)\) \(\chi_{425}(112,\cdot)\) \(\chi_{425}(133,\cdot)\) \(\chi_{425}(142,\cdot)\) \(\chi_{425}(147,\cdot)\) \(\chi_{425}(148,\cdot)\) \(\chi_{425}(158,\cdot)\) \(\chi_{425}(173,\cdot)\) \(\chi_{425}(177,\cdot)\) \(\chi_{425}(197,\cdot)\) \(\chi_{425}(227,\cdot)\) \(\chi_{425}(233,\cdot)\) \(\chi_{425}(258,\cdot)\) \(\chi_{425}(262,\cdot)\) \(\chi_{425}(303,\cdot)\) \(\chi_{425}(312,\cdot)\) \(\chi_{425}(317,\cdot)\) \(\chi_{425}(328,\cdot)\) \(\chi_{425}(347,\cdot)\) \(\chi_{425}(367,\cdot)\) \(\chi_{425}(388,\cdot)\) \(\chi_{425}(397,\cdot)\) \(\chi_{425}(402,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

\((52,326)\) → \((e\left(\frac{1}{20}\right),e\left(\frac{3}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 425 }(27, a) \) \(1\)\(1\)\(e\left(\frac{27}{40}\right)\)\(e\left(\frac{43}{80}\right)\)\(e\left(\frac{7}{20}\right)\)\(e\left(\frac{17}{80}\right)\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{1}{40}\right)\)\(e\left(\frac{3}{40}\right)\)\(e\left(\frac{9}{80}\right)\)\(e\left(\frac{71}{80}\right)\)\(e\left(\frac{7}{10}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 425 }(27,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 425 }(27,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 425 }(27,·),\chi_{ 425 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 425 }(27,·)) \;\) at \(\; a,b = \) e.g. 1,2