sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(425, base_ring=CyclotomicField(40))
M = H._module
chi = DirichletCharacter(H, M([32,25]))
pari:[g,chi] = znchar(Mod(161,425))
| Modulus: | \(425\) | |
| Conductor: | \(425\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(40\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{425}(36,\cdot)\)
\(\chi_{425}(66,\cdot)\)
\(\chi_{425}(111,\cdot)\)
\(\chi_{425}(121,\cdot)\)
\(\chi_{425}(161,\cdot)\)
\(\chi_{425}(196,\cdot)\)
\(\chi_{425}(206,\cdot)\)
\(\chi_{425}(236,\cdot)\)
\(\chi_{425}(246,\cdot)\)
\(\chi_{425}(281,\cdot)\)
\(\chi_{425}(291,\cdot)\)
\(\chi_{425}(321,\cdot)\)
\(\chi_{425}(331,\cdot)\)
\(\chi_{425}(366,\cdot)\)
\(\chi_{425}(406,\cdot)\)
\(\chi_{425}(416,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((52,326)\) → \((e\left(\frac{4}{5}\right),e\left(\frac{5}{8}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
| \( \chi_{ 425 }(161, a) \) |
\(1\) | \(1\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{9}{40}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{31}{40}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{7}{40}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{7}{10}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)