Properties

Label 4225.7
Modulus $4225$
Conductor $845$
Order $156$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4225, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([39,107]))
 
Copy content pari:[g,chi] = znchar(Mod(7,4225))
 

Basic properties

Modulus: \(4225\)
Conductor: \(845\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{845}(7,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4225.cg

\(\chi_{4225}(7,\cdot)\) \(\chi_{4225}(93,\cdot)\) \(\chi_{4225}(232,\cdot)\) \(\chi_{4225}(318,\cdot)\) \(\chi_{4225}(332,\cdot)\) \(\chi_{4225}(557,\cdot)\) \(\chi_{4225}(643,\cdot)\) \(\chi_{4225}(743,\cdot)\) \(\chi_{4225}(882,\cdot)\) \(\chi_{4225}(968,\cdot)\) \(\chi_{4225}(982,\cdot)\) \(\chi_{4225}(1068,\cdot)\) \(\chi_{4225}(1207,\cdot)\) \(\chi_{4225}(1293,\cdot)\) \(\chi_{4225}(1307,\cdot)\) \(\chi_{4225}(1393,\cdot)\) \(\chi_{4225}(1532,\cdot)\) \(\chi_{4225}(1618,\cdot)\) \(\chi_{4225}(1632,\cdot)\) \(\chi_{4225}(1718,\cdot)\) \(\chi_{4225}(1857,\cdot)\) \(\chi_{4225}(1943,\cdot)\) \(\chi_{4225}(1957,\cdot)\) \(\chi_{4225}(2043,\cdot)\) \(\chi_{4225}(2182,\cdot)\) \(\chi_{4225}(2268,\cdot)\) \(\chi_{4225}(2282,\cdot)\) \(\chi_{4225}(2368,\cdot)\) \(\chi_{4225}(2507,\cdot)\) \(\chi_{4225}(2593,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((677,3551)\) → \((i,e\left(\frac{107}{156}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(14\)
\( \chi_{ 4225 }(7, a) \) \(1\)\(1\)\(e\left(\frac{73}{78}\right)\)\(e\left(\frac{125}{156}\right)\)\(e\left(\frac{34}{39}\right)\)\(e\left(\frac{115}{156}\right)\)\(e\left(\frac{25}{39}\right)\)\(e\left(\frac{21}{26}\right)\)\(e\left(\frac{47}{78}\right)\)\(e\left(\frac{101}{156}\right)\)\(e\left(\frac{35}{52}\right)\)\(e\left(\frac{15}{26}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4225 }(7,a) \;\) at \(\;a = \) e.g. 2