Properties

Label 4225.606
Modulus $4225$
Conductor $325$
Order $20$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4225, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([8,5]))
 
Copy content pari:[g,chi] = znchar(Mod(606,4225))
 

Basic properties

Modulus: \(4225\)
Conductor: \(325\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{325}(281,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4225.bb

\(\chi_{4225}(606,\cdot)\) \(\chi_{4225}(746,\cdot)\) \(\chi_{4225}(1591,\cdot)\) \(\chi_{4225}(2296,\cdot)\) \(\chi_{4225}(2436,\cdot)\) \(\chi_{4225}(3141,\cdot)\) \(\chi_{4225}(3281,\cdot)\) \(\chi_{4225}(3986,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

\((677,3551)\) → \((e\left(\frac{2}{5}\right),i)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(14\)
\( \chi_{ 4225 }(606, a) \) \(-1\)\(1\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{9}{20}\right)\)\(-i\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{2}{5}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4225 }(606,a) \;\) at \(\;a = \) e.g. 2