sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4225, base_ring=CyclotomicField(390))
M = H._module
chi = DirichletCharacter(H, M([39,5]))
pari:[g,chi] = znchar(Mod(4,4225))
Modulus: | \(4225\) | |
Conductor: | \(4225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(390\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4225}(4,\cdot)\)
\(\chi_{4225}(69,\cdot)\)
\(\chi_{4225}(114,\cdot)\)
\(\chi_{4225}(134,\cdot)\)
\(\chi_{4225}(179,\cdot)\)
\(\chi_{4225}(244,\cdot)\)
\(\chi_{4225}(264,\cdot)\)
\(\chi_{4225}(309,\cdot)\)
\(\chi_{4225}(329,\cdot)\)
\(\chi_{4225}(394,\cdot)\)
\(\chi_{4225}(439,\cdot)\)
\(\chi_{4225}(459,\cdot)\)
\(\chi_{4225}(504,\cdot)\)
\(\chi_{4225}(569,\cdot)\)
\(\chi_{4225}(589,\cdot)\)
\(\chi_{4225}(634,\cdot)\)
\(\chi_{4225}(719,\cdot)\)
\(\chi_{4225}(764,\cdot)\)
\(\chi_{4225}(784,\cdot)\)
\(\chi_{4225}(829,\cdot)\)
\(\chi_{4225}(894,\cdot)\)
\(\chi_{4225}(914,\cdot)\)
\(\chi_{4225}(959,\cdot)\)
\(\chi_{4225}(979,\cdot)\)
\(\chi_{4225}(1044,\cdot)\)
\(\chi_{4225}(1089,\cdot)\)
\(\chi_{4225}(1109,\cdot)\)
\(\chi_{4225}(1154,\cdot)\)
\(\chi_{4225}(1219,\cdot)\)
\(\chi_{4225}(1239,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3551)\) → \((e\left(\frac{1}{10}\right),e\left(\frac{1}{78}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
\( \chi_{ 4225 }(4, a) \) |
\(1\) | \(1\) | \(e\left(\frac{22}{195}\right)\) | \(e\left(\frac{113}{390}\right)\) | \(e\left(\frac{44}{195}\right)\) | \(e\left(\frac{157}{390}\right)\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{22}{65}\right)\) | \(e\left(\frac{113}{195}\right)\) | \(e\left(\frac{359}{390}\right)\) | \(e\left(\frac{67}{130}\right)\) | \(e\left(\frac{64}{65}\right)\) |
sage:chi.jacobi_sum(n)