sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4225, base_ring=CyclotomicField(260))
M = H._module
chi = DirichletCharacter(H, M([247,110]))
pari:[g,chi] = znchar(Mod(38,4225))
Modulus: | \(4225\) | |
Conductor: | \(4225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(260\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4225}(12,\cdot)\)
\(\chi_{4225}(38,\cdot)\)
\(\chi_{4225}(77,\cdot)\)
\(\chi_{4225}(103,\cdot)\)
\(\chi_{4225}(142,\cdot)\)
\(\chi_{4225}(233,\cdot)\)
\(\chi_{4225}(272,\cdot)\)
\(\chi_{4225}(298,\cdot)\)
\(\chi_{4225}(363,\cdot)\)
\(\chi_{4225}(402,\cdot)\)
\(\chi_{4225}(428,\cdot)\)
\(\chi_{4225}(467,\cdot)\)
\(\chi_{4225}(558,\cdot)\)
\(\chi_{4225}(597,\cdot)\)
\(\chi_{4225}(623,\cdot)\)
\(\chi_{4225}(662,\cdot)\)
\(\chi_{4225}(688,\cdot)\)
\(\chi_{4225}(727,\cdot)\)
\(\chi_{4225}(753,\cdot)\)
\(\chi_{4225}(792,\cdot)\)
\(\chi_{4225}(883,\cdot)\)
\(\chi_{4225}(922,\cdot)\)
\(\chi_{4225}(948,\cdot)\)
\(\chi_{4225}(987,\cdot)\)
\(\chi_{4225}(1052,\cdot)\)
\(\chi_{4225}(1078,\cdot)\)
\(\chi_{4225}(1117,\cdot)\)
\(\chi_{4225}(1208,\cdot)\)
\(\chi_{4225}(1247,\cdot)\)
\(\chi_{4225}(1273,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3551)\) → \((e\left(\frac{19}{20}\right),e\left(\frac{11}{26}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
\( \chi_{ 4225 }(38, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{97}{260}\right)\) | \(e\left(\frac{29}{260}\right)\) | \(e\left(\frac{97}{130}\right)\) | \(e\left(\frac{63}{130}\right)\) | \(e\left(\frac{1}{52}\right)\) | \(e\left(\frac{31}{260}\right)\) | \(e\left(\frac{29}{130}\right)\) | \(e\left(\frac{101}{130}\right)\) | \(e\left(\frac{223}{260}\right)\) | \(e\left(\frac{51}{130}\right)\) |
sage:chi.jacobi_sum(n)