sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4225, base_ring=CyclotomicField(260))
M = H._module
chi = DirichletCharacter(H, M([182,245]))
pari:[g,chi] = znchar(Mod(34,4225))
Modulus: | \(4225\) | |
Conductor: | \(4225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(260\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4225}(34,\cdot)\)
\(\chi_{4225}(44,\cdot)\)
\(\chi_{4225}(109,\cdot)\)
\(\chi_{4225}(164,\cdot)\)
\(\chi_{4225}(229,\cdot)\)
\(\chi_{4225}(294,\cdot)\)
\(\chi_{4225}(304,\cdot)\)
\(\chi_{4225}(359,\cdot)\)
\(\chi_{4225}(369,\cdot)\)
\(\chi_{4225}(434,\cdot)\)
\(\chi_{4225}(489,\cdot)\)
\(\chi_{4225}(554,\cdot)\)
\(\chi_{4225}(564,\cdot)\)
\(\chi_{4225}(619,\cdot)\)
\(\chi_{4225}(629,\cdot)\)
\(\chi_{4225}(684,\cdot)\)
\(\chi_{4225}(694,\cdot)\)
\(\chi_{4225}(759,\cdot)\)
\(\chi_{4225}(814,\cdot)\)
\(\chi_{4225}(879,\cdot)\)
\(\chi_{4225}(889,\cdot)\)
\(\chi_{4225}(954,\cdot)\)
\(\chi_{4225}(1009,\cdot)\)
\(\chi_{4225}(1019,\cdot)\)
\(\chi_{4225}(1139,\cdot)\)
\(\chi_{4225}(1204,\cdot)\)
\(\chi_{4225}(1214,\cdot)\)
\(\chi_{4225}(1269,\cdot)\)
\(\chi_{4225}(1279,\cdot)\)
\(\chi_{4225}(1334,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3551)\) → \((e\left(\frac{7}{10}\right),e\left(\frac{49}{52}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
\( \chi_{ 4225 }(34, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{167}{260}\right)\) | \(e\left(\frac{97}{130}\right)\) | \(e\left(\frac{37}{130}\right)\) | \(e\left(\frac{101}{260}\right)\) | \(e\left(\frac{17}{52}\right)\) | \(e\left(\frac{241}{260}\right)\) | \(e\left(\frac{32}{65}\right)\) | \(e\left(\frac{67}{260}\right)\) | \(e\left(\frac{2}{65}\right)\) | \(e\left(\frac{63}{65}\right)\) |
sage:chi.jacobi_sum(n)