sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4225, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([3,0]))
pari:[g,chi] = znchar(Mod(339,4225))
\(\chi_{4225}(339,\cdot)\)
\(\chi_{4225}(1184,\cdot)\)
\(\chi_{4225}(2029,\cdot)\)
\(\chi_{4225}(3719,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3551)\) → \((e\left(\frac{3}{10}\right),1)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
\( \chi_{ 4225 }(339, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(-1\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) |
sage:chi.jacobi_sum(n)