sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4225, base_ring=CyclotomicField(390))
M = H._module
chi = DirichletCharacter(H, M([39,100]))
pari:[g,chi] = znchar(Mod(29,4225))
Modulus: | \(4225\) | |
Conductor: | \(4225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(390\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4225}(9,\cdot)\)
\(\chi_{4225}(29,\cdot)\)
\(\chi_{4225}(94,\cdot)\)
\(\chi_{4225}(139,\cdot)\)
\(\chi_{4225}(159,\cdot)\)
\(\chi_{4225}(204,\cdot)\)
\(\chi_{4225}(269,\cdot)\)
\(\chi_{4225}(289,\cdot)\)
\(\chi_{4225}(334,\cdot)\)
\(\chi_{4225}(354,\cdot)\)
\(\chi_{4225}(419,\cdot)\)
\(\chi_{4225}(464,\cdot)\)
\(\chi_{4225}(594,\cdot)\)
\(\chi_{4225}(614,\cdot)\)
\(\chi_{4225}(659,\cdot)\)
\(\chi_{4225}(679,\cdot)\)
\(\chi_{4225}(744,\cdot)\)
\(\chi_{4225}(789,\cdot)\)
\(\chi_{4225}(809,\cdot)\)
\(\chi_{4225}(854,\cdot)\)
\(\chi_{4225}(919,\cdot)\)
\(\chi_{4225}(939,\cdot)\)
\(\chi_{4225}(984,\cdot)\)
\(\chi_{4225}(1004,\cdot)\)
\(\chi_{4225}(1069,\cdot)\)
\(\chi_{4225}(1114,\cdot)\)
\(\chi_{4225}(1134,\cdot)\)
\(\chi_{4225}(1179,\cdot)\)
\(\chi_{4225}(1244,\cdot)\)
\(\chi_{4225}(1264,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3551)\) → \((e\left(\frac{1}{10}\right),e\left(\frac{10}{39}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
\( \chi_{ 4225 }(29, a) \) |
\(1\) | \(1\) | \(e\left(\frac{139}{390}\right)\) | \(e\left(\frac{193}{390}\right)\) | \(e\left(\frac{139}{195}\right)\) | \(e\left(\frac{166}{195}\right)\) | \(e\left(\frac{73}{78}\right)\) | \(e\left(\frac{9}{130}\right)\) | \(e\left(\frac{193}{195}\right)\) | \(e\left(\frac{2}{195}\right)\) | \(e\left(\frac{27}{130}\right)\) | \(e\left(\frac{19}{65}\right)\) |
sage:chi.jacobi_sum(n)