sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4225, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([39,20]))
pari:[g,chi] = znchar(Mod(1667,4225))
\(\chi_{4225}(22,\cdot)\)
\(\chi_{4225}(653,\cdot)\)
\(\chi_{4225}(698,\cdot)\)
\(\chi_{4225}(822,\cdot)\)
\(\chi_{4225}(867,\cdot)\)
\(\chi_{4225}(1498,\cdot)\)
\(\chi_{4225}(1667,\cdot)\)
\(\chi_{4225}(1712,\cdot)\)
\(\chi_{4225}(2388,\cdot)\)
\(\chi_{4225}(2512,\cdot)\)
\(\chi_{4225}(3188,\cdot)\)
\(\chi_{4225}(3233,\cdot)\)
\(\chi_{4225}(3402,\cdot)\)
\(\chi_{4225}(4033,\cdot)\)
\(\chi_{4225}(4078,\cdot)\)
\(\chi_{4225}(4202,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3551)\) → \((e\left(\frac{13}{20}\right),e\left(\frac{1}{3}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
\( \chi_{ 4225 }(1667, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) |
sage:chi.jacobi_sum(n)