sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4225, base_ring=CyclotomicField(260))
M = H._module
chi = DirichletCharacter(H, M([39,185]))
pari:[g,chi] = znchar(Mod(1633,4225))
Modulus: | \(4225\) | |
Conductor: | \(4225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(260\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4225}(8,\cdot)\)
\(\chi_{4225}(73,\cdot)\)
\(\chi_{4225}(122,\cdot)\)
\(\chi_{4225}(138,\cdot)\)
\(\chi_{4225}(187,\cdot)\)
\(\chi_{4225}(203,\cdot)\)
\(\chi_{4225}(252,\cdot)\)
\(\chi_{4225}(317,\cdot)\)
\(\chi_{4225}(333,\cdot)\)
\(\chi_{4225}(398,\cdot)\)
\(\chi_{4225}(447,\cdot)\)
\(\chi_{4225}(463,\cdot)\)
\(\chi_{4225}(512,\cdot)\)
\(\chi_{4225}(528,\cdot)\)
\(\chi_{4225}(642,\cdot)\)
\(\chi_{4225}(658,\cdot)\)
\(\chi_{4225}(723,\cdot)\)
\(\chi_{4225}(772,\cdot)\)
\(\chi_{4225}(788,\cdot)\)
\(\chi_{4225}(837,\cdot)\)
\(\chi_{4225}(853,\cdot)\)
\(\chi_{4225}(902,\cdot)\)
\(\chi_{4225}(967,\cdot)\)
\(\chi_{4225}(983,\cdot)\)
\(\chi_{4225}(1048,\cdot)\)
\(\chi_{4225}(1097,\cdot)\)
\(\chi_{4225}(1162,\cdot)\)
\(\chi_{4225}(1178,\cdot)\)
\(\chi_{4225}(1227,\cdot)\)
\(\chi_{4225}(1292,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3551)\) → \((e\left(\frac{3}{20}\right),e\left(\frac{37}{52}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
\( \chi_{ 4225 }(1633, a) \) |
\(1\) | \(1\) | \(e\left(\frac{56}{65}\right)\) | \(e\left(\frac{73}{260}\right)\) | \(e\left(\frac{47}{65}\right)\) | \(e\left(\frac{37}{260}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{38}{65}\right)\) | \(e\left(\frac{73}{130}\right)\) | \(e\left(\frac{179}{260}\right)\) | \(e\left(\frac{1}{260}\right)\) | \(e\left(\frac{97}{130}\right)\) |
sage:chi.jacobi_sum(n)