L(s) = 1 | + (0.644 − 0.764i)2-s + (−0.192 + 0.981i)3-s + (−0.168 − 0.985i)4-s + (0.626 + 0.779i)6-s + (0.748 − 0.663i)7-s + (−0.861 − 0.506i)8-s + (−0.926 − 0.377i)9-s + (−0.377 − 0.926i)11-s + (0.999 + 0.0241i)12-s + (−0.0241 − 0.999i)14-s + (−0.943 + 0.331i)16-s + (0.506 − 0.861i)17-s + (−0.885 + 0.464i)18-s + (0.951 − 0.309i)19-s + (0.506 + 0.861i)21-s + (−0.951 − 0.309i)22-s + ⋯ |
L(s) = 1 | + (0.644 − 0.764i)2-s + (−0.192 + 0.981i)3-s + (−0.168 − 0.985i)4-s + (0.626 + 0.779i)6-s + (0.748 − 0.663i)7-s + (−0.861 − 0.506i)8-s + (−0.926 − 0.377i)9-s + (−0.377 − 0.926i)11-s + (0.999 + 0.0241i)12-s + (−0.0241 − 0.999i)14-s + (−0.943 + 0.331i)16-s + (0.506 − 0.861i)17-s + (−0.885 + 0.464i)18-s + (0.951 − 0.309i)19-s + (0.506 + 0.861i)21-s + (−0.951 − 0.309i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4225 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.361 - 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4225 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.361 - 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.328649692 - 1.941045905i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.328649692 - 1.941045905i\) |
\(L(1)\) |
\(\approx\) |
\(1.300811816 - 0.6269412870i\) |
\(L(1)\) |
\(\approx\) |
\(1.300811816 - 0.6269412870i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.644 - 0.764i)T \) |
| 3 | \( 1 + (-0.192 + 0.981i)T \) |
| 7 | \( 1 + (0.748 - 0.663i)T \) |
| 11 | \( 1 + (-0.377 - 0.926i)T \) |
| 17 | \( 1 + (0.506 - 0.861i)T \) |
| 19 | \( 1 + (0.951 - 0.309i)T \) |
| 23 | \( 1 + (0.587 + 0.809i)T \) |
| 29 | \( 1 + (0.0724 - 0.997i)T \) |
| 31 | \( 1 + (0.626 + 0.779i)T \) |
| 37 | \( 1 + (0.262 - 0.964i)T \) |
| 41 | \( 1 + (0.873 + 0.485i)T \) |
| 43 | \( 1 + (0.935 + 0.354i)T \) |
| 47 | \( 1 + (-0.715 + 0.698i)T \) |
| 53 | \( 1 + (-0.916 + 0.399i)T \) |
| 59 | \( 1 + (0.999 + 0.0241i)T \) |
| 61 | \( 1 + (0.995 + 0.0965i)T \) |
| 67 | \( 1 + (-0.168 + 0.985i)T \) |
| 71 | \( 1 + (-0.192 + 0.981i)T \) |
| 73 | \( 1 + (0.926 - 0.377i)T \) |
| 79 | \( 1 + (-0.715 + 0.698i)T \) |
| 83 | \( 1 + (-0.981 + 0.192i)T \) |
| 89 | \( 1 + (-0.587 - 0.809i)T \) |
| 97 | \( 1 + (-0.607 - 0.794i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.43835654595560951820578733180, −17.77947636640793931925930183345, −17.329378307910201776955253429041, −16.61061169545044645150096834553, −15.80969042939182142733123565070, −14.99500959556285598626464048149, −14.542671211561288237578612207218, −13.96754281330112468920540319659, −12.99875763759353820085201733319, −12.630721972619518469302473117967, −11.99016033923535154944231779097, −11.43413748090685082105718080408, −10.50400404656701145945725591261, −9.379724536505791098300311391463, −8.530816247759199295373151180039, −7.96074645525885942379244737997, −7.46787271077485121776884229968, −6.65738443581480548458701236419, −6.0025139903810188845318286449, −5.20991707468607431816249345426, −4.83508523950680745501751680099, −3.69910981625012628127225802035, −2.71188901480059364432551963321, −2.10988619125648688883463289626, −1.10328270421544349525333529717,
0.60868259852557367543328248671, 1.27895903909207856896498894708, 2.73812757397216694631686880184, 3.07368152857678827115956596449, 4.050501098790614637739138907062, 4.55834686776497285451217448056, 5.459989952262464832803476738, 5.6612593459992794926524681886, 6.87673303407528615236061893527, 7.814261446056436196486118571529, 8.68016263995843880159482038497, 9.5753237263708274389941572154, 9.94191721519256239648310262553, 10.87015790074391973510651422034, 11.354356897383759403638068784682, 11.61542563225341582765719378373, 12.72754690873908181539626221355, 13.54888849752856779735060151673, 14.26402561217474640085375444643, 14.37753690199071327097405300953, 15.60466556958315500581862939857, 15.87476596788433318061743473726, 16.69509876334526029147148216846, 17.67017391588102925763628587690, 18.01720741002584476305842519521