Properties

Label 42237.qc
Modulus $42237$
Conductor $14079$
Order $228$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(42237, base_ring=CyclotomicField(228)) M = H._module chi = DirichletCharacter(H, M([114,95,216])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(305,42237)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(42237\)
Conductor: \(14079\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(228\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 14079.fs
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{228})$
Fixed field: Number field defined by a degree 228 polynomial (not computed)

First 31 of 72 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(14\) \(16\) \(17\)
\(\chi_{42237}(305,\cdot)\) \(1\) \(1\) \(e\left(\frac{197}{228}\right)\) \(e\left(\frac{83}{114}\right)\) \(e\left(\frac{3}{76}\right)\) \(e\left(\frac{157}{228}\right)\) \(e\left(\frac{45}{76}\right)\) \(e\left(\frac{103}{114}\right)\) \(e\left(\frac{11}{228}\right)\) \(e\left(\frac{21}{38}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{25}{57}\right)\)
\(\chi_{42237}(1502,\cdot)\) \(1\) \(1\) \(e\left(\frac{107}{228}\right)\) \(e\left(\frac{107}{114}\right)\) \(e\left(\frac{73}{76}\right)\) \(e\left(\frac{223}{228}\right)\) \(e\left(\frac{31}{76}\right)\) \(e\left(\frac{49}{114}\right)\) \(e\left(\frac{65}{228}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{13}{57}\right)\)
\(\chi_{42237}(1844,\cdot)\) \(1\) \(1\) \(e\left(\frac{103}{228}\right)\) \(e\left(\frac{103}{114}\right)\) \(e\left(\frac{17}{76}\right)\) \(e\left(\frac{155}{228}\right)\) \(e\left(\frac{27}{76}\right)\) \(e\left(\frac{77}{114}\right)\) \(e\left(\frac{37}{228}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{53}{57}\right)\)
\(\chi_{42237}(2186,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{228}\right)\) \(e\left(\frac{61}{114}\right)\) \(e\left(\frac{75}{76}\right)\) \(e\left(\frac{125}{228}\right)\) \(e\left(\frac{61}{76}\right)\) \(e\left(\frac{29}{114}\right)\) \(e\left(\frac{199}{228}\right)\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{17}{57}\right)\)
\(\chi_{42237}(3725,\cdot)\) \(1\) \(1\) \(e\left(\frac{119}{228}\right)\) \(e\left(\frac{5}{114}\right)\) \(e\left(\frac{13}{76}\right)\) \(e\left(\frac{199}{228}\right)\) \(e\left(\frac{43}{76}\right)\) \(e\left(\frac{79}{114}\right)\) \(e\left(\frac{149}{228}\right)\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{7}{57}\right)\)
\(\chi_{42237}(4067,\cdot)\) \(1\) \(1\) \(e\left(\frac{115}{228}\right)\) \(e\left(\frac{1}{114}\right)\) \(e\left(\frac{33}{76}\right)\) \(e\left(\frac{131}{228}\right)\) \(e\left(\frac{39}{76}\right)\) \(e\left(\frac{107}{114}\right)\) \(e\left(\frac{121}{228}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{47}{57}\right)\)
\(\chi_{42237}(4409,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{228}\right)\) \(e\left(\frac{73}{114}\right)\) \(e\left(\frac{15}{76}\right)\) \(e\left(\frac{101}{228}\right)\) \(e\left(\frac{73}{76}\right)\) \(e\left(\frac{59}{114}\right)\) \(e\left(\frac{55}{228}\right)\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{11}{57}\right)\)
\(\chi_{42237}(4751,\cdot)\) \(1\) \(1\) \(e\left(\frac{221}{228}\right)\) \(e\left(\frac{107}{114}\right)\) \(e\left(\frac{35}{76}\right)\) \(e\left(\frac{109}{228}\right)\) \(e\left(\frac{69}{76}\right)\) \(e\left(\frac{49}{114}\right)\) \(e\left(\frac{179}{228}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{13}{57}\right)\)
\(\chi_{42237}(5948,\cdot)\) \(1\) \(1\) \(e\left(\frac{131}{228}\right)\) \(e\left(\frac{17}{114}\right)\) \(e\left(\frac{29}{76}\right)\) \(e\left(\frac{175}{228}\right)\) \(e\left(\frac{55}{76}\right)\) \(e\left(\frac{109}{114}\right)\) \(e\left(\frac{5}{228}\right)\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{1}{57}\right)\)
\(\chi_{42237}(6290,\cdot)\) \(1\) \(1\) \(e\left(\frac{127}{228}\right)\) \(e\left(\frac{13}{114}\right)\) \(e\left(\frac{49}{76}\right)\) \(e\left(\frac{107}{228}\right)\) \(e\left(\frac{51}{76}\right)\) \(e\left(\frac{23}{114}\right)\) \(e\left(\frac{205}{228}\right)\) \(e\left(\frac{1}{38}\right)\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{41}{57}\right)\)
\(\chi_{42237}(6632,\cdot)\) \(1\) \(1\) \(e\left(\frac{85}{228}\right)\) \(e\left(\frac{85}{114}\right)\) \(e\left(\frac{31}{76}\right)\) \(e\left(\frac{77}{228}\right)\) \(e\left(\frac{9}{76}\right)\) \(e\left(\frac{89}{114}\right)\) \(e\left(\frac{139}{228}\right)\) \(e\left(\frac{27}{38}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{5}{57}\right)\)
\(\chi_{42237}(6974,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{228}\right)\) \(e\left(\frac{5}{114}\right)\) \(e\left(\frac{51}{76}\right)\) \(e\left(\frac{85}{228}\right)\) \(e\left(\frac{5}{76}\right)\) \(e\left(\frac{79}{114}\right)\) \(e\left(\frac{35}{228}\right)\) \(e\left(\frac{15}{38}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{7}{57}\right)\)
\(\chi_{42237}(8171,\cdot)\) \(1\) \(1\) \(e\left(\frac{143}{228}\right)\) \(e\left(\frac{29}{114}\right)\) \(e\left(\frac{45}{76}\right)\) \(e\left(\frac{151}{228}\right)\) \(e\left(\frac{67}{76}\right)\) \(e\left(\frac{25}{114}\right)\) \(e\left(\frac{89}{228}\right)\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{52}{57}\right)\)
\(\chi_{42237}(8513,\cdot)\) \(1\) \(1\) \(e\left(\frac{139}{228}\right)\) \(e\left(\frac{25}{114}\right)\) \(e\left(\frac{65}{76}\right)\) \(e\left(\frac{83}{228}\right)\) \(e\left(\frac{63}{76}\right)\) \(e\left(\frac{53}{114}\right)\) \(e\left(\frac{61}{228}\right)\) \(e\left(\frac{37}{38}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{35}{57}\right)\)
\(\chi_{42237}(8855,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{228}\right)\) \(e\left(\frac{97}{114}\right)\) \(e\left(\frac{47}{76}\right)\) \(e\left(\frac{53}{228}\right)\) \(e\left(\frac{21}{76}\right)\) \(e\left(\frac{5}{114}\right)\) \(e\left(\frac{223}{228}\right)\) \(e\left(\frac{25}{38}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{56}{57}\right)\)
\(\chi_{42237}(9197,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{228}\right)\) \(e\left(\frac{17}{114}\right)\) \(e\left(\frac{67}{76}\right)\) \(e\left(\frac{61}{228}\right)\) \(e\left(\frac{17}{76}\right)\) \(e\left(\frac{109}{114}\right)\) \(e\left(\frac{119}{228}\right)\) \(e\left(\frac{13}{38}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{1}{57}\right)\)
\(\chi_{42237}(10394,\cdot)\) \(1\) \(1\) \(e\left(\frac{155}{228}\right)\) \(e\left(\frac{41}{114}\right)\) \(e\left(\frac{61}{76}\right)\) \(e\left(\frac{127}{228}\right)\) \(e\left(\frac{3}{76}\right)\) \(e\left(\frac{55}{114}\right)\) \(e\left(\frac{173}{228}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{46}{57}\right)\)
\(\chi_{42237}(10736,\cdot)\) \(1\) \(1\) \(e\left(\frac{151}{228}\right)\) \(e\left(\frac{37}{114}\right)\) \(e\left(\frac{5}{76}\right)\) \(e\left(\frac{59}{228}\right)\) \(e\left(\frac{75}{76}\right)\) \(e\left(\frac{83}{114}\right)\) \(e\left(\frac{145}{228}\right)\) \(e\left(\frac{35}{38}\right)\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{29}{57}\right)\)
\(\chi_{42237}(11078,\cdot)\) \(1\) \(1\) \(e\left(\frac{109}{228}\right)\) \(e\left(\frac{109}{114}\right)\) \(e\left(\frac{63}{76}\right)\) \(e\left(\frac{29}{228}\right)\) \(e\left(\frac{33}{76}\right)\) \(e\left(\frac{35}{114}\right)\) \(e\left(\frac{79}{228}\right)\) \(e\left(\frac{23}{38}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{50}{57}\right)\)
\(\chi_{42237}(11420,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{228}\right)\) \(e\left(\frac{29}{114}\right)\) \(e\left(\frac{7}{76}\right)\) \(e\left(\frac{37}{228}\right)\) \(e\left(\frac{29}{76}\right)\) \(e\left(\frac{25}{114}\right)\) \(e\left(\frac{203}{228}\right)\) \(e\left(\frac{11}{38}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{52}{57}\right)\)
\(\chi_{42237}(12617,\cdot)\) \(1\) \(1\) \(e\left(\frac{167}{228}\right)\) \(e\left(\frac{53}{114}\right)\) \(e\left(\frac{1}{76}\right)\) \(e\left(\frac{103}{228}\right)\) \(e\left(\frac{15}{76}\right)\) \(e\left(\frac{85}{114}\right)\) \(e\left(\frac{29}{228}\right)\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{40}{57}\right)\)
\(\chi_{42237}(12959,\cdot)\) \(1\) \(1\) \(e\left(\frac{163}{228}\right)\) \(e\left(\frac{49}{114}\right)\) \(e\left(\frac{21}{76}\right)\) \(e\left(\frac{35}{228}\right)\) \(e\left(\frac{11}{76}\right)\) \(e\left(\frac{113}{114}\right)\) \(e\left(\frac{1}{228}\right)\) \(e\left(\frac{33}{38}\right)\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{23}{57}\right)\)
\(\chi_{42237}(13301,\cdot)\) \(1\) \(1\) \(e\left(\frac{121}{228}\right)\) \(e\left(\frac{7}{114}\right)\) \(e\left(\frac{3}{76}\right)\) \(e\left(\frac{5}{228}\right)\) \(e\left(\frac{45}{76}\right)\) \(e\left(\frac{65}{114}\right)\) \(e\left(\frac{163}{228}\right)\) \(e\left(\frac{21}{38}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{44}{57}\right)\)
\(\chi_{42237}(13643,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{228}\right)\) \(e\left(\frac{41}{114}\right)\) \(e\left(\frac{23}{76}\right)\) \(e\left(\frac{13}{228}\right)\) \(e\left(\frac{41}{76}\right)\) \(e\left(\frac{55}{114}\right)\) \(e\left(\frac{59}{228}\right)\) \(e\left(\frac{9}{38}\right)\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{46}{57}\right)\)
\(\chi_{42237}(14840,\cdot)\) \(1\) \(1\) \(e\left(\frac{179}{228}\right)\) \(e\left(\frac{65}{114}\right)\) \(e\left(\frac{17}{76}\right)\) \(e\left(\frac{79}{228}\right)\) \(e\left(\frac{27}{76}\right)\) \(e\left(\frac{1}{114}\right)\) \(e\left(\frac{113}{228}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{34}{57}\right)\)
\(\chi_{42237}(15182,\cdot)\) \(1\) \(1\) \(e\left(\frac{175}{228}\right)\) \(e\left(\frac{61}{114}\right)\) \(e\left(\frac{37}{76}\right)\) \(e\left(\frac{11}{228}\right)\) \(e\left(\frac{23}{76}\right)\) \(e\left(\frac{29}{114}\right)\) \(e\left(\frac{85}{228}\right)\) \(e\left(\frac{31}{38}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{17}{57}\right)\)
\(\chi_{42237}(15866,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{228}\right)\) \(e\left(\frac{53}{114}\right)\) \(e\left(\frac{39}{76}\right)\) \(e\left(\frac{217}{228}\right)\) \(e\left(\frac{53}{76}\right)\) \(e\left(\frac{85}{114}\right)\) \(e\left(\frac{143}{228}\right)\) \(e\left(\frac{7}{38}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{40}{57}\right)\)
\(\chi_{42237}(17063,\cdot)\) \(1\) \(1\) \(e\left(\frac{191}{228}\right)\) \(e\left(\frac{77}{114}\right)\) \(e\left(\frac{33}{76}\right)\) \(e\left(\frac{55}{228}\right)\) \(e\left(\frac{39}{76}\right)\) \(e\left(\frac{31}{114}\right)\) \(e\left(\frac{197}{228}\right)\) \(e\left(\frac{3}{38}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{28}{57}\right)\)
\(\chi_{42237}(17405,\cdot)\) \(1\) \(1\) \(e\left(\frac{187}{228}\right)\) \(e\left(\frac{73}{114}\right)\) \(e\left(\frac{53}{76}\right)\) \(e\left(\frac{215}{228}\right)\) \(e\left(\frac{35}{76}\right)\) \(e\left(\frac{59}{114}\right)\) \(e\left(\frac{169}{228}\right)\) \(e\left(\frac{29}{38}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{11}{57}\right)\)
\(\chi_{42237}(17747,\cdot)\) \(1\) \(1\) \(e\left(\frac{145}{228}\right)\) \(e\left(\frac{31}{114}\right)\) \(e\left(\frac{35}{76}\right)\) \(e\left(\frac{185}{228}\right)\) \(e\left(\frac{69}{76}\right)\) \(e\left(\frac{11}{114}\right)\) \(e\left(\frac{103}{228}\right)\) \(e\left(\frac{17}{38}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{32}{57}\right)\)
\(\chi_{42237}(18089,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{228}\right)\) \(e\left(\frac{65}{114}\right)\) \(e\left(\frac{55}{76}\right)\) \(e\left(\frac{193}{228}\right)\) \(e\left(\frac{65}{76}\right)\) \(e\left(\frac{1}{114}\right)\) \(e\left(\frac{227}{228}\right)\) \(e\left(\frac{5}{38}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{34}{57}\right)\)