sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(42237, base_ring=CyclotomicField(114))
M = H._module
chi = DirichletCharacter(H, M([19,38,99]))
pari:[g,chi] = znchar(Mod(27758,42237))
| Modulus: | \(42237\) | |
| Conductor: | \(42237\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(114\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{42237}(113,\cdot)\)
\(\chi_{42237}(2336,\cdot)\)
\(\chi_{42237}(3305,\cdot)\)
\(\chi_{42237}(4559,\cdot)\)
\(\chi_{42237}(5528,\cdot)\)
\(\chi_{42237}(6782,\cdot)\)
\(\chi_{42237}(7751,\cdot)\)
\(\chi_{42237}(9005,\cdot)\)
\(\chi_{42237}(9974,\cdot)\)
\(\chi_{42237}(11228,\cdot)\)
\(\chi_{42237}(12197,\cdot)\)
\(\chi_{42237}(13451,\cdot)\)
\(\chi_{42237}(14420,\cdot)\)
\(\chi_{42237}(15674,\cdot)\)
\(\chi_{42237}(16643,\cdot)\)
\(\chi_{42237}(17897,\cdot)\)
\(\chi_{42237}(18866,\cdot)\)
\(\chi_{42237}(20120,\cdot)\)
\(\chi_{42237}(21089,\cdot)\)
\(\chi_{42237}(22343,\cdot)\)
\(\chi_{42237}(23312,\cdot)\)
\(\chi_{42237}(24566,\cdot)\)
\(\chi_{42237}(25535,\cdot)\)
\(\chi_{42237}(26789,\cdot)\)
\(\chi_{42237}(27758,\cdot)\)
\(\chi_{42237}(29012,\cdot)\)
\(\chi_{42237}(29981,\cdot)\)
\(\chi_{42237}(31235,\cdot)\)
\(\chi_{42237}(32204,\cdot)\)
\(\chi_{42237}(33458,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((32852,38989,12637)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{1}{3}\right),e\left(\frac{33}{38}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
| \( \chi_{ 42237 }(27758, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{19}\right)\) | \(e\left(\frac{14}{19}\right)\) | \(e\left(\frac{35}{114}\right)\) | \(e\left(\frac{34}{57}\right)\) | \(e\left(\frac{2}{19}\right)\) | \(e\left(\frac{77}{114}\right)\) | \(e\left(\frac{3}{38}\right)\) | \(e\left(\frac{55}{57}\right)\) | \(e\left(\frac{9}{19}\right)\) | \(e\left(\frac{49}{114}\right)\) |
sage:chi.jacobi_sum(n)