sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(42237, base_ring=CyclotomicField(114))
M = H._module
chi = DirichletCharacter(H, M([38,95,2]))
pari:[g,chi] = znchar(Mod(20641,42237))
| Modulus: | \(42237\) | |
| Conductor: | \(42237\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(114\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{42237}(277,\cdot)\)
\(\chi_{42237}(634,\cdot)\)
\(\chi_{42237}(2500,\cdot)\)
\(\chi_{42237}(2857,\cdot)\)
\(\chi_{42237}(4723,\cdot)\)
\(\chi_{42237}(5080,\cdot)\)
\(\chi_{42237}(6946,\cdot)\)
\(\chi_{42237}(7303,\cdot)\)
\(\chi_{42237}(9169,\cdot)\)
\(\chi_{42237}(9526,\cdot)\)
\(\chi_{42237}(11392,\cdot)\)
\(\chi_{42237}(11749,\cdot)\)
\(\chi_{42237}(13615,\cdot)\)
\(\chi_{42237}(13972,\cdot)\)
\(\chi_{42237}(15838,\cdot)\)
\(\chi_{42237}(16195,\cdot)\)
\(\chi_{42237}(18061,\cdot)\)
\(\chi_{42237}(18418,\cdot)\)
\(\chi_{42237}(20641,\cdot)\)
\(\chi_{42237}(22507,\cdot)\)
\(\chi_{42237}(22864,\cdot)\)
\(\chi_{42237}(24730,\cdot)\)
\(\chi_{42237}(25087,\cdot)\)
\(\chi_{42237}(26953,\cdot)\)
\(\chi_{42237}(27310,\cdot)\)
\(\chi_{42237}(29176,\cdot)\)
\(\chi_{42237}(31399,\cdot)\)
\(\chi_{42237}(31756,\cdot)\)
\(\chi_{42237}(33622,\cdot)\)
\(\chi_{42237}(33979,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((32852,38989,12637)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{5}{6}\right),e\left(\frac{1}{57}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
| \( \chi_{ 42237 }(20641, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{38}\right)\) | \(e\left(\frac{7}{19}\right)\) | \(e\left(\frac{9}{38}\right)\) | \(e\left(\frac{5}{38}\right)\) | \(e\left(\frac{21}{38}\right)\) | \(e\left(\frac{8}{19}\right)\) | \(e\left(\frac{109}{114}\right)\) | \(e\left(\frac{6}{19}\right)\) | \(e\left(\frac{14}{19}\right)\) | \(e\left(\frac{12}{19}\right)\) |
sage:chi.jacobi_sum(n)