Properties

Label 4176.fu
Modulus $4176$
Conductor $4176$
Order $84$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4176, base_ring=CyclotomicField(84)) M = H._module chi = DirichletCharacter(H, M([42,63,14,48])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(83,4176)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4176\)
Conductor: \(4176\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(84\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{84})$
Fixed field: Number field defined by a degree 84 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(31\) \(35\)
\(\chi_{4176}(83,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{73}{84}\right)\) \(-1\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{19}{28}\right)\)
\(\chi_{4176}(227,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{61}{84}\right)\) \(-1\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{27}{28}\right)\)
\(\chi_{4176}(371,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{37}{84}\right)\) \(-1\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{15}{28}\right)\)
\(\chi_{4176}(587,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{67}{84}\right)\) \(-1\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{9}{28}\right)\)
\(\chi_{4176}(779,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{59}{84}\right)\) \(-1\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{5}{28}\right)\)
\(\chi_{4176}(803,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{1}{84}\right)\) \(-1\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{11}{28}\right)\)
\(\chi_{4176}(923,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{47}{84}\right)\) \(-1\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{13}{28}\right)\)
\(\chi_{4176}(1067,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{23}{84}\right)\) \(-1\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{1}{28}\right)\)
\(\chi_{4176}(1283,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{53}{84}\right)\) \(-1\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{23}{28}\right)\)
\(\chi_{4176}(1379,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{13}{84}\right)\) \(-1\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{3}{28}\right)\)
\(\chi_{4176}(1499,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{71}{84}\right)\) \(-1\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{25}{28}\right)\)
\(\chi_{4176}(2075,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{83}{84}\right)\) \(-1\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{17}{28}\right)\)
\(\chi_{4176}(2171,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{31}{84}\right)\) \(-1\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{5}{28}\right)\)
\(\chi_{4176}(2315,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{19}{84}\right)\) \(-1\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{13}{28}\right)\)
\(\chi_{4176}(2459,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{79}{84}\right)\) \(-1\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{1}{28}\right)\)
\(\chi_{4176}(2675,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{25}{84}\right)\) \(-1\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{23}{28}\right)\)
\(\chi_{4176}(2867,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{17}{84}\right)\) \(-1\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{19}{28}\right)\)
\(\chi_{4176}(2891,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{43}{84}\right)\) \(-1\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{25}{28}\right)\)
\(\chi_{4176}(3011,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{5}{84}\right)\) \(-1\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{27}{28}\right)\)
\(\chi_{4176}(3155,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{65}{84}\right)\) \(-1\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{15}{28}\right)\)
\(\chi_{4176}(3371,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{11}{84}\right)\) \(-1\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{9}{28}\right)\)
\(\chi_{4176}(3467,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{55}{84}\right)\) \(-1\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{17}{28}\right)\)
\(\chi_{4176}(3587,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{29}{84}\right)\) \(-1\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{11}{28}\right)\)
\(\chi_{4176}(4163,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{41}{84}\right)\) \(-1\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{3}{28}\right)\)