sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4176, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([0,21,14,51]))
pari:[g,chi] = znchar(Mod(3269,4176))
| Modulus: | \(4176\) | |
| Conductor: | \(4176\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(84\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4176}(101,\cdot)\)
\(\chi_{4176}(221,\cdot)\)
\(\chi_{4176}(293,\cdot)\)
\(\chi_{4176}(317,\cdot)\)
\(\chi_{4176}(437,\cdot)\)
\(\chi_{4176}(461,\cdot)\)
\(\chi_{4176}(533,\cdot)\)
\(\chi_{4176}(653,\cdot)\)
\(\chi_{4176}(1373,\cdot)\)
\(\chi_{4176}(1613,\cdot)\)
\(\chi_{4176}(1661,\cdot)\)
\(\chi_{4176}(1685,\cdot)\)
\(\chi_{4176}(1829,\cdot)\)
\(\chi_{4176}(1877,\cdot)\)
\(\chi_{4176}(2045,\cdot)\)
\(\chi_{4176}(2165,\cdot)\)
\(\chi_{4176}(2765,\cdot)\)
\(\chi_{4176}(2885,\cdot)\)
\(\chi_{4176}(3053,\cdot)\)
\(\chi_{4176}(3101,\cdot)\)
\(\chi_{4176}(3245,\cdot)\)
\(\chi_{4176}(3269,\cdot)\)
\(\chi_{4176}(3317,\cdot)\)
\(\chi_{4176}(3557,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1567,1045,929,4033)\) → \((1,i,e\left(\frac{1}{6}\right),e\left(\frac{17}{28}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(31\) | \(35\) |
| \( \chi_{ 4176 }(3269, a) \) |
\(1\) | \(1\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{1}{84}\right)\) | \(i\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{79}{84}\right)\) | \(e\left(\frac{25}{28}\right)\) |
sage:chi.jacobi_sum(n)