Properties

Label 4176.1739
Modulus $4176$
Conductor $4176$
Order $12$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4176, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([6,3,2,6]))
 
Copy content pari:[g,chi] = znchar(Mod(1739,4176))
 

Basic properties

Modulus: \(4176\)
Conductor: \(4176\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4176.co

\(\chi_{4176}(347,\cdot)\) \(\chi_{4176}(1739,\cdot)\) \(\chi_{4176}(2435,\cdot)\) \(\chi_{4176}(3827,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.1979522439778248324859035648.1

Values on generators

\((1567,1045,929,4033)\) → \((-1,i,e\left(\frac{1}{6}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(31\)\(35\)
\( \chi_{ 4176 }(1739, a) \) \(1\)\(1\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{12}\right)\)\(1\)\(-i\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(-i\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4176 }(1739,a) \;\) at \(\;a = \) e.g. 2