Properties

Label 4080.941
Modulus $4080$
Conductor $816$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4080, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([0,12,8,0,15]))
 
Copy content pari:[g,chi] = znchar(Mod(941,4080))
 

Basic properties

Modulus: \(4080\)
Conductor: \(816\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{816}(125,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4080.kd

\(\chi_{4080}(581,\cdot)\) \(\chi_{4080}(821,\cdot)\) \(\chi_{4080}(941,\cdot)\) \(\chi_{4080}(1421,\cdot)\) \(\chi_{4080}(3101,\cdot)\) \(\chi_{4080}(3581,\cdot)\) \(\chi_{4080}(3701,\cdot)\) \(\chi_{4080}(3941,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.330387545600365800521582857754247168.1

Values on generators

\((511,3061,1361,817,241)\) → \((1,-i,-1,1,e\left(\frac{15}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 4080 }(941, a) \) \(1\)\(1\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{13}{16}\right)\)\(1\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{5}{8}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4080 }(941,a) \;\) at \(\;a = \) e.g. 2