Properties

Label 4080.1943
Modulus $4080$
Conductor $2040$
Order $16$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4080, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([8,8,8,12,5]))
 
Copy content pari:[g,chi] = znchar(Mod(1943,4080))
 

Basic properties

Modulus: \(4080\)
Conductor: \(2040\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2040}(923,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4080.kj

\(\chi_{4080}(743,\cdot)\) \(\chi_{4080}(983,\cdot)\) \(\chi_{4080}(1367,\cdot)\) \(\chi_{4080}(1703,\cdot)\) \(\chi_{4080}(1847,\cdot)\) \(\chi_{4080}(1943,\cdot)\) \(\chi_{4080}(3287,\cdot)\) \(\chi_{4080}(3767,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.76924344897355372207607808000000000000.2

Values on generators

\((511,3061,1361,817,241)\) → \((-1,-1,-1,-i,e\left(\frac{5}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 4080 }(1943, a) \) \(1\)\(1\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{11}{16}\right)\)\(1\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{7}{8}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4080 }(1943,a) \;\) at \(\;a = \) e.g. 2