sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4080, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([0,12,0,4,9]))
pari:[g,chi] = znchar(Mod(1357,4080))
\(\chi_{4080}(1117,\cdot)\)
\(\chi_{4080}(1333,\cdot)\)
\(\chi_{4080}(1357,\cdot)\)
\(\chi_{4080}(1813,\cdot)\)
\(\chi_{4080}(2077,\cdot)\)
\(\chi_{4080}(2317,\cdot)\)
\(\chi_{4080}(3253,\cdot)\)
\(\chi_{4080}(3733,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((511,3061,1361,817,241)\) → \((1,-i,1,i,e\left(\frac{9}{16}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 4080 }(1357, a) \) |
\(1\) | \(1\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(i\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) |
sage:chi.jacobi_sum(n)