sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(408, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([8,8,8,11]))
pari:[g,chi] = znchar(Mod(347,408))
Modulus: | \(408\) | |
Conductor: | \(408\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(16\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{408}(11,\cdot)\)
\(\chi_{408}(107,\cdot)\)
\(\chi_{408}(131,\cdot)\)
\(\chi_{408}(227,\cdot)\)
\(\chi_{408}(275,\cdot)\)
\(\chi_{408}(299,\cdot)\)
\(\chi_{408}(347,\cdot)\)
\(\chi_{408}(371,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((103,205,137,241)\) → \((-1,-1,-1,e\left(\frac{11}{16}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 408 }(347, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(i\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(-1\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)