sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4056, base_ring=CyclotomicField(52))
M = H._module
chi = DirichletCharacter(H, M([0,26,26,3]))
pari:[g,chi] = znchar(Mod(5,4056))
Modulus: | \(4056\) | |
Conductor: | \(4056\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(52\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4056}(5,\cdot)\)
\(\chi_{4056}(125,\cdot)\)
\(\chi_{4056}(317,\cdot)\)
\(\chi_{4056}(629,\cdot)\)
\(\chi_{4056}(749,\cdot)\)
\(\chi_{4056}(941,\cdot)\)
\(\chi_{4056}(1061,\cdot)\)
\(\chi_{4056}(1373,\cdot)\)
\(\chi_{4056}(1565,\cdot)\)
\(\chi_{4056}(1685,\cdot)\)
\(\chi_{4056}(1877,\cdot)\)
\(\chi_{4056}(1997,\cdot)\)
\(\chi_{4056}(2189,\cdot)\)
\(\chi_{4056}(2309,\cdot)\)
\(\chi_{4056}(2501,\cdot)\)
\(\chi_{4056}(2621,\cdot)\)
\(\chi_{4056}(2813,\cdot)\)
\(\chi_{4056}(2933,\cdot)\)
\(\chi_{4056}(3125,\cdot)\)
\(\chi_{4056}(3245,\cdot)\)
\(\chi_{4056}(3437,\cdot)\)
\(\chi_{4056}(3557,\cdot)\)
\(\chi_{4056}(3749,\cdot)\)
\(\chi_{4056}(3869,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1015,2029,2705,3889)\) → \((1,-1,-1,e\left(\frac{3}{52}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 4056 }(5, a) \) |
\(1\) | \(1\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(i\) | \(1\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{9}{13}\right)\) |
sage:chi.jacobi_sum(n)