![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4056, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([0,78,78,53]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4056, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([0,78,78,53]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(461,4056))
        pari:[g,chi] = znchar(Mod(461,4056))
         
     
    
  
   | Modulus: | \(4056\) |  | 
   | Conductor: | \(4056\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(156\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{4056}(149,\cdot)\)
  \(\chi_{4056}(197,\cdot)\)
  \(\chi_{4056}(245,\cdot)\)
  \(\chi_{4056}(293,\cdot)\)
  \(\chi_{4056}(461,\cdot)\)
  \(\chi_{4056}(509,\cdot)\)
  \(\chi_{4056}(557,\cdot)\)
  \(\chi_{4056}(605,\cdot)\)
  \(\chi_{4056}(773,\cdot)\)
  \(\chi_{4056}(821,\cdot)\)
  \(\chi_{4056}(869,\cdot)\)
  \(\chi_{4056}(917,\cdot)\)
  \(\chi_{4056}(1085,\cdot)\)
  \(\chi_{4056}(1133,\cdot)\)
  \(\chi_{4056}(1181,\cdot)\)
  \(\chi_{4056}(1229,\cdot)\)
  \(\chi_{4056}(1397,\cdot)\)
  \(\chi_{4056}(1445,\cdot)\)
  \(\chi_{4056}(1493,\cdot)\)
  \(\chi_{4056}(1541,\cdot)\)
  \(\chi_{4056}(1757,\cdot)\)
  \(\chi_{4056}(1805,\cdot)\)
  \(\chi_{4056}(1853,\cdot)\)
  \(\chi_{4056}(2021,\cdot)\)
  \(\chi_{4056}(2069,\cdot)\)
  \(\chi_{4056}(2165,\cdot)\)
  \(\chi_{4056}(2333,\cdot)\)
  \(\chi_{4056}(2381,\cdot)\)
  \(\chi_{4056}(2429,\cdot)\)
  \(\chi_{4056}(2477,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((1015,2029,2705,3889)\) → \((1,-1,-1,e\left(\frac{53}{156}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) | 
    
    
      | \( \chi_{ 4056 }(461, a) \) | \(1\) | \(1\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{55}{156}\right)\) | \(e\left(\frac{155}{156}\right)\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{16}{39}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)