Properties

Label 4056.3797
Modulus $4056$
Conductor $4056$
Order $26$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4056, base_ring=CyclotomicField(26)) M = H._module chi = DirichletCharacter(H, M([0,13,13,4]))
 
Copy content pari:[g,chi] = znchar(Mod(3797,4056))
 

Basic properties

Modulus: \(4056\)
Conductor: \(4056\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(26\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4056.bx

\(\chi_{4056}(53,\cdot)\) \(\chi_{4056}(365,\cdot)\) \(\chi_{4056}(989,\cdot)\) \(\chi_{4056}(1301,\cdot)\) \(\chi_{4056}(1613,\cdot)\) \(\chi_{4056}(1925,\cdot)\) \(\chi_{4056}(2237,\cdot)\) \(\chi_{4056}(2549,\cdot)\) \(\chi_{4056}(2861,\cdot)\) \(\chi_{4056}(3173,\cdot)\) \(\chi_{4056}(3485,\cdot)\) \(\chi_{4056}(3797,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{13})\)
Fixed field: Number field defined by a degree 26 polynomial

Values on generators

\((1015,2029,2705,3889)\) → \((1,-1,-1,e\left(\frac{2}{13}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 4056 }(3797, a) \) \(-1\)\(1\)\(e\left(\frac{5}{13}\right)\)\(e\left(\frac{6}{13}\right)\)\(e\left(\frac{11}{13}\right)\)\(e\left(\frac{25}{26}\right)\)\(-1\)\(-1\)\(e\left(\frac{10}{13}\right)\)\(e\left(\frac{2}{13}\right)\)\(e\left(\frac{3}{13}\right)\)\(e\left(\frac{11}{13}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4056 }(3797,a) \;\) at \(\;a = \) e.g. 2