Properties

Label 4056.1345
Modulus $4056$
Conductor $169$
Order $156$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4056, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([0,0,0,29]))
 
Copy content pari:[g,chi] = znchar(Mod(1345,4056))
 

Basic properties

Modulus: \(4056\)
Conductor: \(169\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{169}(162,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4056.dn

\(\chi_{4056}(97,\cdot)\) \(\chi_{4056}(145,\cdot)\) \(\chi_{4056}(193,\cdot)\) \(\chi_{4056}(241,\cdot)\) \(\chi_{4056}(409,\cdot)\) \(\chi_{4056}(457,\cdot)\) \(\chi_{4056}(505,\cdot)\) \(\chi_{4056}(553,\cdot)\) \(\chi_{4056}(721,\cdot)\) \(\chi_{4056}(769,\cdot)\) \(\chi_{4056}(817,\cdot)\) \(\chi_{4056}(865,\cdot)\) \(\chi_{4056}(1081,\cdot)\) \(\chi_{4056}(1129,\cdot)\) \(\chi_{4056}(1177,\cdot)\) \(\chi_{4056}(1345,\cdot)\) \(\chi_{4056}(1393,\cdot)\) \(\chi_{4056}(1489,\cdot)\) \(\chi_{4056}(1657,\cdot)\) \(\chi_{4056}(1705,\cdot)\) \(\chi_{4056}(1753,\cdot)\) \(\chi_{4056}(1801,\cdot)\) \(\chi_{4056}(1969,\cdot)\) \(\chi_{4056}(2017,\cdot)\) \(\chi_{4056}(2065,\cdot)\) \(\chi_{4056}(2113,\cdot)\) \(\chi_{4056}(2281,\cdot)\) \(\chi_{4056}(2329,\cdot)\) \(\chi_{4056}(2377,\cdot)\) \(\chi_{4056}(2425,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((1015,2029,2705,3889)\) → \((1,1,1,e\left(\frac{29}{156}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 4056 }(1345, a) \) \(-1\)\(1\)\(e\left(\frac{35}{52}\right)\)\(e\left(\frac{139}{156}\right)\)\(e\left(\frac{23}{156}\right)\)\(e\left(\frac{11}{78}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{9}{26}\right)\)\(e\left(\frac{17}{39}\right)\)\(e\left(\frac{47}{52}\right)\)\(e\left(\frac{22}{39}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4056 }(1345,a) \;\) at \(\;a = \) e.g. 2