sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4056, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([39,39,39,35]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(1115,4056))
         
     
    
  
   | Modulus: |  \(4056\) |   |  
   | Conductor: |  \(4056\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(78\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{4056}(179,\cdot)\)
  \(\chi_{4056}(251,\cdot)\)
  \(\chi_{4056}(491,\cdot)\)
  \(\chi_{4056}(563,\cdot)\)
  \(\chi_{4056}(803,\cdot)\)
  \(\chi_{4056}(875,\cdot)\)
  \(\chi_{4056}(1115,\cdot)\)
  \(\chi_{4056}(1187,\cdot)\)
  \(\chi_{4056}(1427,\cdot)\)
  \(\chi_{4056}(1739,\cdot)\)
  \(\chi_{4056}(1811,\cdot)\)
  \(\chi_{4056}(2123,\cdot)\)
  \(\chi_{4056}(2363,\cdot)\)
  \(\chi_{4056}(2435,\cdot)\)
  \(\chi_{4056}(2675,\cdot)\)
  \(\chi_{4056}(2747,\cdot)\)
  \(\chi_{4056}(2987,\cdot)\)
  \(\chi_{4056}(3059,\cdot)\)
  \(\chi_{4056}(3299,\cdot)\)
  \(\chi_{4056}(3371,\cdot)\)
  \(\chi_{4056}(3611,\cdot)\)
  \(\chi_{4056}(3683,\cdot)\)
  \(\chi_{4056}(3923,\cdot)\)
  \(\chi_{4056}(3995,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((1015,2029,2705,3889)\) → \((-1,-1,-1,e\left(\frac{35}{78}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |       
    
    
      | \( \chi_{ 4056 }(1115, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{43}{78}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)