Properties

Label 40320.6863
Modulus $40320$
Conductor $10080$
Order $24$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(40320, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([12,15,20,18,4]))
 
Copy content pari:[g,chi] = znchar(Mod(6863,40320))
 

Basic properties

Modulus: \(40320\)
Conductor: \(10080\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{10080}(3083,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 40320.vj

\(\chi_{40320}(47,\cdot)\) \(\chi_{40320}(2063,\cdot)\) \(\chi_{40320}(4847,\cdot)\) \(\chi_{40320}(6863,\cdot)\) \(\chi_{40320}(20207,\cdot)\) \(\chi_{40320}(22223,\cdot)\) \(\chi_{40320}(25007,\cdot)\) \(\chi_{40320}(27023,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

\((8191,23941,17921,32257,28801)\) → \((-1,e\left(\frac{5}{8}\right),e\left(\frac{5}{6}\right),-i,e\left(\frac{1}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 40320 }(6863, a) \) \(1\)\(1\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{19}{24}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{5}{24}\right)\)\(1\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{17}{24}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{5}{24}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 40320 }(6863,a) \;\) at \(\;a = \) e.g. 2