sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(40320, base_ring=CyclotomicField(96))
M = H._module
chi = DirichletCharacter(H, M([48,15,16,24,48]))
pari:[g,chi] = znchar(Mod(587,40320))
| Modulus: | \(40320\) | |
| Conductor: | \(40320\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(96\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{40320}(83,\cdot)\)
\(\chi_{40320}(587,\cdot)\)
\(\chi_{40320}(3443,\cdot)\)
\(\chi_{40320}(3947,\cdot)\)
\(\chi_{40320}(5123,\cdot)\)
\(\chi_{40320}(5627,\cdot)\)
\(\chi_{40320}(8483,\cdot)\)
\(\chi_{40320}(8987,\cdot)\)
\(\chi_{40320}(10163,\cdot)\)
\(\chi_{40320}(10667,\cdot)\)
\(\chi_{40320}(13523,\cdot)\)
\(\chi_{40320}(14027,\cdot)\)
\(\chi_{40320}(15203,\cdot)\)
\(\chi_{40320}(15707,\cdot)\)
\(\chi_{40320}(18563,\cdot)\)
\(\chi_{40320}(19067,\cdot)\)
\(\chi_{40320}(20243,\cdot)\)
\(\chi_{40320}(20747,\cdot)\)
\(\chi_{40320}(23603,\cdot)\)
\(\chi_{40320}(24107,\cdot)\)
\(\chi_{40320}(25283,\cdot)\)
\(\chi_{40320}(25787,\cdot)\)
\(\chi_{40320}(28643,\cdot)\)
\(\chi_{40320}(29147,\cdot)\)
\(\chi_{40320}(30323,\cdot)\)
\(\chi_{40320}(30827,\cdot)\)
\(\chi_{40320}(33683,\cdot)\)
\(\chi_{40320}(34187,\cdot)\)
\(\chi_{40320}(35363,\cdot)\)
\(\chi_{40320}(35867,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((8191,23941,17921,32257,28801)\) → \((-1,e\left(\frac{5}{32}\right),e\left(\frac{1}{6}\right),i,-1)\)
| \(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
| \( \chi_{ 40320 }(587, a) \) |
\(1\) | \(1\) | \(e\left(\frac{91}{96}\right)\) | \(e\left(\frac{89}{96}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{32}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{85}{96}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{32}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{43}{96}\right)\) |
sage:chi.jacobi_sum(n)