Properties

Label 40320.587
Modulus $40320$
Conductor $40320$
Order $96$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(40320, base_ring=CyclotomicField(96)) M = H._module chi = DirichletCharacter(H, M([48,15,16,24,48]))
 
Copy content pari:[g,chi] = znchar(Mod(587,40320))
 

Basic properties

Modulus: \(40320\)
Conductor: \(40320\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(96\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 40320.bdx

\(\chi_{40320}(83,\cdot)\) \(\chi_{40320}(587,\cdot)\) \(\chi_{40320}(3443,\cdot)\) \(\chi_{40320}(3947,\cdot)\) \(\chi_{40320}(5123,\cdot)\) \(\chi_{40320}(5627,\cdot)\) \(\chi_{40320}(8483,\cdot)\) \(\chi_{40320}(8987,\cdot)\) \(\chi_{40320}(10163,\cdot)\) \(\chi_{40320}(10667,\cdot)\) \(\chi_{40320}(13523,\cdot)\) \(\chi_{40320}(14027,\cdot)\) \(\chi_{40320}(15203,\cdot)\) \(\chi_{40320}(15707,\cdot)\) \(\chi_{40320}(18563,\cdot)\) \(\chi_{40320}(19067,\cdot)\) \(\chi_{40320}(20243,\cdot)\) \(\chi_{40320}(20747,\cdot)\) \(\chi_{40320}(23603,\cdot)\) \(\chi_{40320}(24107,\cdot)\) \(\chi_{40320}(25283,\cdot)\) \(\chi_{40320}(25787,\cdot)\) \(\chi_{40320}(28643,\cdot)\) \(\chi_{40320}(29147,\cdot)\) \(\chi_{40320}(30323,\cdot)\) \(\chi_{40320}(30827,\cdot)\) \(\chi_{40320}(33683,\cdot)\) \(\chi_{40320}(34187,\cdot)\) \(\chi_{40320}(35363,\cdot)\) \(\chi_{40320}(35867,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{96})$
Fixed field: Number field defined by a degree 96 polynomial

Values on generators

\((8191,23941,17921,32257,28801)\) → \((-1,e\left(\frac{5}{32}\right),e\left(\frac{1}{6}\right),i,-1)\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 40320 }(587, a) \) \(1\)\(1\)\(e\left(\frac{91}{96}\right)\)\(e\left(\frac{89}{96}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{3}{32}\right)\)\(e\left(\frac{13}{48}\right)\)\(e\left(\frac{85}{96}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{5}{32}\right)\)\(e\left(\frac{1}{48}\right)\)\(e\left(\frac{43}{96}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 40320 }(587,a) \;\) at \(\;a = \) e.g. 2