Properties

Label 40320.4799
Modulus $40320$
Conductor $2520$
Order $6$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(40320, base_ring=CyclotomicField(6)) M = H._module chi = DirichletCharacter(H, M([3,3,1,3,4]))
 
Copy content pari:[g,chi] = znchar(Mod(4799,40320))
 

Basic properties

Modulus: \(40320\)
Conductor: \(2520\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(6\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2520}(1019,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 40320.gc

\(\chi_{40320}(4799,\cdot)\) \(\chi_{40320}(29759,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(\zeta_3)\)
Fixed field: 6.6.3024568512000.2

Values on generators

\((8191,23941,17921,32257,28801)\) → \((-1,-1,e\left(\frac{1}{6}\right),-1,e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 40320 }(4799, a) \) \(1\)\(1\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(-1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{6}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 40320 }(4799,a) \;\) at \(\;a = \) e.g. 2