Properties

Label 40320.4427
Modulus $40320$
Conductor $13440$
Order $96$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(40320, base_ring=CyclotomicField(96)) M = H._module chi = DirichletCharacter(H, M([48,15,48,24,16]))
 
Copy content pari:[g,chi] = znchar(Mod(4427,40320))
 

Basic properties

Modulus: \(40320\)
Conductor: \(13440\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(96\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{13440}(4427,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 40320.bhs

\(\chi_{40320}(2483,\cdot)\) \(\chi_{40320}(2987,\cdot)\) \(\chi_{40320}(3923,\cdot)\) \(\chi_{40320}(4427,\cdot)\) \(\chi_{40320}(7523,\cdot)\) \(\chi_{40320}(8027,\cdot)\) \(\chi_{40320}(8963,\cdot)\) \(\chi_{40320}(9467,\cdot)\) \(\chi_{40320}(12563,\cdot)\) \(\chi_{40320}(13067,\cdot)\) \(\chi_{40320}(14003,\cdot)\) \(\chi_{40320}(14507,\cdot)\) \(\chi_{40320}(17603,\cdot)\) \(\chi_{40320}(18107,\cdot)\) \(\chi_{40320}(19043,\cdot)\) \(\chi_{40320}(19547,\cdot)\) \(\chi_{40320}(22643,\cdot)\) \(\chi_{40320}(23147,\cdot)\) \(\chi_{40320}(24083,\cdot)\) \(\chi_{40320}(24587,\cdot)\) \(\chi_{40320}(27683,\cdot)\) \(\chi_{40320}(28187,\cdot)\) \(\chi_{40320}(29123,\cdot)\) \(\chi_{40320}(29627,\cdot)\) \(\chi_{40320}(32723,\cdot)\) \(\chi_{40320}(33227,\cdot)\) \(\chi_{40320}(34163,\cdot)\) \(\chi_{40320}(34667,\cdot)\) \(\chi_{40320}(37763,\cdot)\) \(\chi_{40320}(38267,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{96})$
Fixed field: Number field defined by a degree 96 polynomial

Values on generators

\((8191,23941,17921,32257,28801)\) → \((-1,e\left(\frac{5}{32}\right),-1,i,e\left(\frac{1}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 40320 }(4427, a) \) \(1\)\(1\)\(e\left(\frac{91}{96}\right)\)\(e\left(\frac{19}{32}\right)\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{41}{96}\right)\)\(e\left(\frac{13}{48}\right)\)\(e\left(\frac{7}{32}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{47}{96}\right)\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{25}{32}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 40320 }(4427,a) \;\) at \(\;a = \) e.g. 2