Properties

Label 40320.32033
Modulus $40320$
Conductor $720$
Order $12$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(40320, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([0,9,2,9,0]))
 
Copy content pari:[g,chi] = znchar(Mod(32033,40320))
 

Basic properties

Modulus: \(40320\)
Conductor: \(720\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{720}(173,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 40320.oi

\(\chi_{40320}(5153,\cdot)\) \(\chi_{40320}(19937,\cdot)\) \(\chi_{40320}(32033,\cdot)\) \(\chi_{40320}(33377,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.6499837226778624000000000.2

Values on generators

\((8191,23941,17921,32257,28801)\) → \((1,-i,e\left(\frac{1}{6}\right),-i,1)\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 40320 }(32033, a) \) \(1\)\(1\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(i\)\(-i\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{1}{3}\right)\)\(-1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 40320 }(32033,a) \;\) at \(\;a = \) e.g. 2