Properties

Label 4032.dm
Modulus $4032$
Conductor $32$
Order $8$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4032, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([0,5,0,0])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(505,4032)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4032\)
Conductor: \(32\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(8\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 32.g
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: \(\Q(\zeta_{32})^+\)

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\)
\(\chi_{4032}(505,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(-1\) \(e\left(\frac{3}{8}\right)\) \(-i\) \(i\) \(e\left(\frac{7}{8}\right)\) \(1\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{4032}(1513,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(-1\) \(e\left(\frac{1}{8}\right)\) \(i\) \(-i\) \(e\left(\frac{5}{8}\right)\) \(1\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{4032}(2521,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{7}{8}\right)\) \(-i\) \(i\) \(e\left(\frac{3}{8}\right)\) \(1\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{4032}(3529,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(-1\) \(e\left(\frac{5}{8}\right)\) \(i\) \(-i\) \(e\left(\frac{1}{8}\right)\) \(1\) \(e\left(\frac{3}{8}\right)\)