sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(403, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([5,8]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(8,403))
         
     
    
  
   | Modulus: |  \(403\) |   |  
   | Conductor: |  \(403\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(20\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  odd |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{403}(8,\cdot)\)
  \(\chi_{403}(47,\cdot)\)
  \(\chi_{403}(70,\cdot)\)
  \(\chi_{403}(109,\cdot)\)
  \(\chi_{403}(190,\cdot)\)
  \(\chi_{403}(252,\cdot)\)
  \(\chi_{403}(281,\cdot)\)
  \(\chi_{403}(343,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((249,313)\) → \((i,e\left(\frac{2}{5}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |       
    
    
      | \( \chi_{ 403 }(8, a) \) | 
      \(-1\) | \(1\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(i\) | \(i\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{19}{20}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.gauss_sum(a)
         
     
    
    
        
        pari:znchargauss(g,chi,a)
         
     
    
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.kloosterman_sum(a,b)