sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(403, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([25,42]))
pari:[g,chi] = znchar(Mod(201,403))
| Modulus: | \(403\) | |
| Conductor: | \(403\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(60\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{403}(15,\cdot)\)
\(\chi_{403}(46,\cdot)\)
\(\chi_{403}(54,\cdot)\)
\(\chi_{403}(58,\cdot)\)
\(\chi_{403}(85,\cdot)\)
\(\chi_{403}(89,\cdot)\)
\(\chi_{403}(184,\cdot)\)
\(\chi_{403}(201,\cdot)\)
\(\chi_{403}(215,\cdot)\)
\(\chi_{403}(232,\cdot)\)
\(\chi_{403}(240,\cdot)\)
\(\chi_{403}(271,\cdot)\)
\(\chi_{403}(275,\cdot)\)
\(\chi_{403}(306,\cdot)\)
\(\chi_{403}(370,\cdot)\)
\(\chi_{403}(401,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((249,313)\) → \((e\left(\frac{5}{12}\right),e\left(\frac{7}{10}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 403 }(201, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{1}{60}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)