Properties

Label 4020.dr
Modulus $4020$
Conductor $1340$
Order $132$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4020, base_ring=CyclotomicField(132)) M = H._module chi = DirichletCharacter(H, M([66,0,33,46])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(7,4020)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4020\)
Conductor: \(1340\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(132\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 1340.bv
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{132})$
Fixed field: Number field defined by a degree 132 polynomial (not computed)

First 31 of 40 characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{4020}(7,\cdot)\) \(-1\) \(1\) \(e\left(\frac{101}{132}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{49}{132}\right)\) \(e\left(\frac{73}{132}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{1}{132}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{31}{66}\right)\)
\(\chi_{4020}(247,\cdot)\) \(-1\) \(1\) \(e\left(\frac{113}{132}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{13}{132}\right)\) \(e\left(\frac{49}{132}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{73}{132}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{19}{66}\right)\)
\(\chi_{4020}(367,\cdot)\) \(-1\) \(1\) \(e\left(\frac{65}{132}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{25}{132}\right)\) \(e\left(\frac{13}{132}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{49}{132}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{66}\right)\)
\(\chi_{4020}(463,\cdot)\) \(-1\) \(1\) \(e\left(\frac{91}{132}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{35}{132}\right)\) \(e\left(\frac{71}{132}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{95}{132}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{41}{66}\right)\)
\(\chi_{4020}(487,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{132}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{65}{132}\right)\) \(e\left(\frac{113}{132}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{101}{132}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{29}{66}\right)\)
\(\chi_{4020}(547,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{132}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{97}{132}\right)\) \(e\left(\frac{61}{132}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{37}{132}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{25}{66}\right)\)
\(\chi_{4020}(727,\cdot)\) \(-1\) \(1\) \(e\left(\frac{109}{132}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{113}{132}\right)\) \(e\left(\frac{101}{132}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{5}{132}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{23}{66}\right)\)
\(\chi_{4020}(787,\cdot)\) \(-1\) \(1\) \(e\left(\frac{73}{132}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{89}{132}\right)\) \(e\left(\frac{41}{132}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{53}{132}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{59}{66}\right)\)
\(\chi_{4020}(883,\cdot)\) \(-1\) \(1\) \(e\left(\frac{71}{132}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{7}{132}\right)\) \(e\left(\frac{67}{132}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{19}{132}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{61}{66}\right)\)
\(\chi_{4020}(1123,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{132}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{119}{132}\right)\) \(e\left(\frac{83}{132}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{59}{132}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{47}{66}\right)\)
\(\chi_{4020}(1183,\cdot)\) \(-1\) \(1\) \(e\left(\frac{67}{132}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{107}{132}\right)\) \(e\left(\frac{119}{132}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{83}{132}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{65}{66}\right)\)
\(\chi_{4020}(1267,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{132}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{101}{132}\right)\) \(e\left(\frac{5}{132}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{29}{132}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{41}{66}\right)\)
\(\chi_{4020}(1543,\cdot)\) \(-1\) \(1\) \(e\left(\frac{79}{132}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{71}{132}\right)\) \(e\left(\frac{95}{132}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{23}{132}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{53}{66}\right)\)
\(\chi_{4020}(1687,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{132}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{73}{132}\right)\) \(e\left(\frac{1}{132}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{85}{132}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{61}{66}\right)\)
\(\chi_{4020}(1723,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{132}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{83}{132}\right)\) \(e\left(\frac{59}{132}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{131}{132}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{35}{66}\right)\)
\(\chi_{4020}(1783,\cdot)\) \(-1\) \(1\) \(e\left(\frac{95}{132}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{67}{132}\right)\) \(e\left(\frac{19}{132}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{31}{132}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{37}{66}\right)\)
\(\chi_{4020}(1843,\cdot)\) \(-1\) \(1\) \(e\left(\frac{119}{132}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{127}{132}\right)\) \(e\left(\frac{103}{132}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{43}{132}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{13}{66}\right)\)
\(\chi_{4020}(1927,\cdot)\) \(-1\) \(1\) \(e\left(\frac{85}{132}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{53}{132}\right)\) \(e\left(\frac{17}{132}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{125}{132}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{47}{66}\right)\)
\(\chi_{4020}(1963,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{132}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{19}{132}\right)\) \(e\left(\frac{31}{132}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{127}{132}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{43}{66}\right)\)
\(\chi_{4020}(1987,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{132}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{41}{132}\right)\) \(e\left(\frac{53}{132}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{17}{132}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{65}{66}\right)\)
\(\chi_{4020}(2023,\cdot)\) \(-1\) \(1\) \(e\left(\frac{115}{132}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{95}{132}\right)\) \(e\left(\frac{23}{132}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{107}{132}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{17}{66}\right)\)
\(\chi_{4020}(2347,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{132}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{5}{132}\right)\) \(e\left(\frac{29}{132}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{89}{132}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{53}{66}\right)\)
\(\chi_{4020}(2443,\cdot)\) \(-1\) \(1\) \(e\left(\frac{83}{132}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{103}{132}\right)\) \(e\left(\frac{43}{132}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{91}{132}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{49}{66}\right)\)
\(\chi_{4020}(2527,\cdot)\) \(-1\) \(1\) \(e\left(\frac{97}{132}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{17}{132}\right)\) \(e\left(\frac{125}{132}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{65}{132}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{35}{66}\right)\)
\(\chi_{4020}(2587,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{132}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{1}{132}\right)\) \(e\left(\frac{85}{132}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{97}{132}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{37}{66}\right)\)
\(\chi_{4020}(2647,\cdot)\) \(-1\) \(1\) \(e\left(\frac{53}{132}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{61}{132}\right)\) \(e\left(\frac{37}{132}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{109}{132}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{13}{66}\right)\)
\(\chi_{4020}(2743,\cdot)\) \(-1\) \(1\) \(e\left(\frac{59}{132}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{43}{132}\right)\) \(e\left(\frac{91}{132}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{79}{132}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{66}\right)\)
\(\chi_{4020}(2767,\cdot)\) \(-1\) \(1\) \(e\left(\frac{89}{132}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{85}{132}\right)\) \(e\left(\frac{97}{132}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{61}{132}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{43}{66}\right)\)
\(\chi_{4020}(2827,\cdot)\) \(-1\) \(1\) \(e\left(\frac{49}{132}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{29}{132}\right)\) \(e\left(\frac{89}{132}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{41}{132}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{17}{66}\right)\)
\(\chi_{4020}(3043,\cdot)\) \(-1\) \(1\) \(e\left(\frac{127}{132}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{59}{132}\right)\) \(e\left(\frac{131}{132}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{47}{132}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{66}\right)\)
\(\chi_{4020}(3223,\cdot)\) \(-1\) \(1\) \(e\left(\frac{35}{132}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{115}{132}\right)\) \(e\left(\frac{7}{132}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{67}{132}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{31}{66}\right)\)