Properties

Label 4020.dd
Modulus $4020$
Conductor $1340$
Order $66$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4020, base_ring=CyclotomicField(66)) M = H._module chi = DirichletCharacter(H, M([33,0,33,10])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(19,4020)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4020\)
Conductor: \(1340\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(66\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 1340.bl
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 66 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{4020}(19,\cdot)\) \(-1\) \(1\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{29}{66}\right)\) \(e\left(\frac{25}{66}\right)\) \(e\left(\frac{13}{66}\right)\) \(e\left(\frac{1}{66}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{41}{66}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{33}\right)\)
\(\chi_{4020}(199,\cdot)\) \(-1\) \(1\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{59}{66}\right)\) \(e\left(\frac{19}{66}\right)\) \(e\left(\frac{31}{66}\right)\) \(e\left(\frac{43}{66}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{47}{66}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{10}{33}\right)\)
\(\chi_{4020}(559,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{35}{66}\right)\) \(e\left(\frac{37}{66}\right)\) \(e\left(\frac{43}{66}\right)\) \(e\left(\frac{49}{66}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{29}{66}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{16}{33}\right)\)
\(\chi_{4020}(619,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{5}{66}\right)\) \(e\left(\frac{43}{66}\right)\) \(e\left(\frac{25}{66}\right)\) \(e\left(\frac{7}{66}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{23}{66}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{33}\right)\)
\(\chi_{4020}(859,\cdot)\) \(-1\) \(1\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{43}{66}\right)\) \(e\left(\frac{53}{66}\right)\) \(e\left(\frac{17}{66}\right)\) \(e\left(\frac{47}{66}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{66}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{14}{33}\right)\)
\(\chi_{4020}(1279,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{17}{66}\right)\) \(e\left(\frac{1}{66}\right)\) \(e\left(\frac{19}{66}\right)\) \(e\left(\frac{37}{66}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{65}{66}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{4}{33}\right)\)
\(\chi_{4020}(1759,\cdot)\) \(-1\) \(1\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{47}{66}\right)\) \(e\left(\frac{61}{66}\right)\) \(e\left(\frac{37}{66}\right)\) \(e\left(\frac{13}{66}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{66}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{33}\right)\)
\(\chi_{4020}(1819,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{53}{66}\right)\) \(e\left(\frac{7}{66}\right)\) \(e\left(\frac{1}{66}\right)\) \(e\left(\frac{61}{66}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{59}{66}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{28}{33}\right)\)
\(\chi_{4020}(1999,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{49}{66}\right)\) \(e\left(\frac{65}{66}\right)\) \(e\left(\frac{47}{66}\right)\) \(e\left(\frac{29}{66}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{66}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{29}{33}\right)\)
\(\chi_{4020}(2059,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{41}{66}\right)\) \(e\left(\frac{49}{66}\right)\) \(e\left(\frac{7}{66}\right)\) \(e\left(\frac{31}{66}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{66}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{31}{33}\right)\)
\(\chi_{4020}(2179,\cdot)\) \(-1\) \(1\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{31}{66}\right)\) \(e\left(\frac{29}{66}\right)\) \(e\left(\frac{23}{66}\right)\) \(e\left(\frac{17}{66}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{37}{66}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{33}\right)\)
\(\chi_{4020}(2299,\cdot)\) \(-1\) \(1\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{61}{66}\right)\) \(e\left(\frac{23}{66}\right)\) \(e\left(\frac{41}{66}\right)\) \(e\left(\frac{59}{66}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{43}{66}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{26}{33}\right)\)
\(\chi_{4020}(2539,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{37}{66}\right)\) \(e\left(\frac{41}{66}\right)\) \(e\left(\frac{53}{66}\right)\) \(e\left(\frac{65}{66}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{25}{66}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{32}{33}\right)\)
\(\chi_{4020}(2719,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{23}{66}\right)\) \(e\left(\frac{13}{66}\right)\) \(e\left(\frac{49}{66}\right)\) \(e\left(\frac{19}{66}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{53}{66}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{33}\right)\)
\(\chi_{4020}(3019,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{19}{66}\right)\) \(e\left(\frac{5}{66}\right)\) \(e\left(\frac{29}{66}\right)\) \(e\left(\frac{53}{66}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{61}{66}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{20}{33}\right)\)
\(\chi_{4020}(3319,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{1}{66}\right)\) \(e\left(\frac{35}{66}\right)\) \(e\left(\frac{5}{66}\right)\) \(e\left(\frac{41}{66}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{31}{66}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{8}{33}\right)\)
\(\chi_{4020}(3739,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{65}{66}\right)\) \(e\left(\frac{31}{66}\right)\) \(e\left(\frac{61}{66}\right)\) \(e\left(\frac{25}{66}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{35}{66}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{25}{33}\right)\)
\(\chi_{4020}(3799,\cdot)\) \(-1\) \(1\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{13}{66}\right)\) \(e\left(\frac{59}{66}\right)\) \(e\left(\frac{65}{66}\right)\) \(e\left(\frac{5}{66}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{66}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{33}\right)\)
\(\chi_{4020}(3919,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{7}{66}\right)\) \(e\left(\frac{47}{66}\right)\) \(e\left(\frac{35}{66}\right)\) \(e\left(\frac{23}{66}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{19}{66}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{23}{33}\right)\)
\(\chi_{4020}(3979,\cdot)\) \(-1\) \(1\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{25}{66}\right)\) \(e\left(\frac{17}{66}\right)\) \(e\left(\frac{59}{66}\right)\) \(e\left(\frac{35}{66}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{49}{66}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{33}\right)\)