Properties

Label 4011.743
Modulus $4011$
Conductor $573$
Order $190$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4011, base_ring=CyclotomicField(190)) M = H._module chi = DirichletCharacter(H, M([95,0,2]))
 
Copy content pari:[g,chi] = znchar(Mod(743,4011))
 

Basic properties

Modulus: \(4011\)
Conductor: \(573\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(190\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{573}(170,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4011.ca

\(\chi_{4011}(8,\cdot)\) \(\chi_{4011}(50,\cdot)\) \(\chi_{4011}(92,\cdot)\) \(\chi_{4011}(134,\cdot)\) \(\chi_{4011}(218,\cdot)\) \(\chi_{4011}(239,\cdot)\) \(\chi_{4011}(281,\cdot)\) \(\chi_{4011}(386,\cdot)\) \(\chi_{4011}(428,\cdot)\) \(\chi_{4011}(449,\cdot)\) \(\chi_{4011}(512,\cdot)\) \(\chi_{4011}(554,\cdot)\) \(\chi_{4011}(575,\cdot)\) \(\chi_{4011}(596,\cdot)\) \(\chi_{4011}(638,\cdot)\) \(\chi_{4011}(659,\cdot)\) \(\chi_{4011}(701,\cdot)\) \(\chi_{4011}(722,\cdot)\) \(\chi_{4011}(743,\cdot)\) \(\chi_{4011}(911,\cdot)\) \(\chi_{4011}(995,\cdot)\) \(\chi_{4011}(1058,\cdot)\) \(\chi_{4011}(1163,\cdot)\) \(\chi_{4011}(1205,\cdot)\) \(\chi_{4011}(1226,\cdot)\) \(\chi_{4011}(1352,\cdot)\) \(\chi_{4011}(1415,\cdot)\) \(\chi_{4011}(1457,\cdot)\) \(\chi_{4011}(1499,\cdot)\) \(\chi_{4011}(1541,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{95})$
Fixed field: Number field defined by a degree 190 polynomial (not computed)

Values on generators

\((2675,2866,2311)\) → \((-1,1,e\left(\frac{1}{95}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\( \chi_{ 4011 }(743, a) \) \(-1\)\(1\)\(e\left(\frac{183}{190}\right)\)\(e\left(\frac{88}{95}\right)\)\(e\left(\frac{1}{38}\right)\)\(e\left(\frac{169}{190}\right)\)\(e\left(\frac{94}{95}\right)\)\(e\left(\frac{15}{38}\right)\)\(e\left(\frac{17}{95}\right)\)\(e\left(\frac{81}{95}\right)\)\(e\left(\frac{101}{190}\right)\)\(e\left(\frac{1}{95}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4011 }(743,a) \;\) at \(\;a = \) e.g. 2