sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4000, base_ring=CyclotomicField(200))
M = H._module
chi = DirichletCharacter(H, M([100,25,32]))
pari:[g,chi] = znchar(Mod(411,4000))
| Modulus: | \(4000\) | |
| Conductor: | \(4000\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(200\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4000}(11,\cdot)\)
\(\chi_{4000}(91,\cdot)\)
\(\chi_{4000}(131,\cdot)\)
\(\chi_{4000}(171,\cdot)\)
\(\chi_{4000}(211,\cdot)\)
\(\chi_{4000}(291,\cdot)\)
\(\chi_{4000}(331,\cdot)\)
\(\chi_{4000}(371,\cdot)\)
\(\chi_{4000}(411,\cdot)\)
\(\chi_{4000}(491,\cdot)\)
\(\chi_{4000}(531,\cdot)\)
\(\chi_{4000}(571,\cdot)\)
\(\chi_{4000}(611,\cdot)\)
\(\chi_{4000}(691,\cdot)\)
\(\chi_{4000}(731,\cdot)\)
\(\chi_{4000}(771,\cdot)\)
\(\chi_{4000}(811,\cdot)\)
\(\chi_{4000}(891,\cdot)\)
\(\chi_{4000}(931,\cdot)\)
\(\chi_{4000}(971,\cdot)\)
\(\chi_{4000}(1011,\cdot)\)
\(\chi_{4000}(1091,\cdot)\)
\(\chi_{4000}(1131,\cdot)\)
\(\chi_{4000}(1171,\cdot)\)
\(\chi_{4000}(1211,\cdot)\)
\(\chi_{4000}(1291,\cdot)\)
\(\chi_{4000}(1331,\cdot)\)
\(\chi_{4000}(1371,\cdot)\)
\(\chi_{4000}(1411,\cdot)\)
\(\chi_{4000}(1491,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2751,2501,1377)\) → \((-1,e\left(\frac{1}{8}\right),e\left(\frac{4}{25}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
| \( \chi_{ 4000 }(411, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{199}{200}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{99}{100}\right)\) | \(e\left(\frac{57}{200}\right)\) | \(e\left(\frac{23}{200}\right)\) | \(e\left(\frac{9}{50}\right)\) | \(e\left(\frac{51}{200}\right)\) | \(e\left(\frac{69}{200}\right)\) | \(e\left(\frac{21}{100}\right)\) | \(e\left(\frac{197}{200}\right)\) |
sage:chi.jacobi_sum(n)