Properties

Label 4000.3111
Modulus $4000$
Conductor $2000$
Order $100$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4000, base_ring=CyclotomicField(100)) M = H._module chi = DirichletCharacter(H, M([50,25,36]))
 
Copy content pari:[g,chi] = znchar(Mod(3111,4000))
 

Basic properties

Modulus: \(4000\)
Conductor: \(2000\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(100\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2000}(1611,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4000.cm

\(\chi_{4000}(71,\cdot)\) \(\chi_{4000}(231,\cdot)\) \(\chi_{4000}(311,\cdot)\) \(\chi_{4000}(391,\cdot)\) \(\chi_{4000}(471,\cdot)\) \(\chi_{4000}(631,\cdot)\) \(\chi_{4000}(711,\cdot)\) \(\chi_{4000}(791,\cdot)\) \(\chi_{4000}(871,\cdot)\) \(\chi_{4000}(1031,\cdot)\) \(\chi_{4000}(1111,\cdot)\) \(\chi_{4000}(1191,\cdot)\) \(\chi_{4000}(1271,\cdot)\) \(\chi_{4000}(1431,\cdot)\) \(\chi_{4000}(1511,\cdot)\) \(\chi_{4000}(1591,\cdot)\) \(\chi_{4000}(1671,\cdot)\) \(\chi_{4000}(1831,\cdot)\) \(\chi_{4000}(1911,\cdot)\) \(\chi_{4000}(1991,\cdot)\) \(\chi_{4000}(2071,\cdot)\) \(\chi_{4000}(2231,\cdot)\) \(\chi_{4000}(2311,\cdot)\) \(\chi_{4000}(2391,\cdot)\) \(\chi_{4000}(2471,\cdot)\) \(\chi_{4000}(2631,\cdot)\) \(\chi_{4000}(2711,\cdot)\) \(\chi_{4000}(2791,\cdot)\) \(\chi_{4000}(2871,\cdot)\) \(\chi_{4000}(3031,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{100})$
Fixed field: Number field defined by a degree 100 polynomial

Values on generators

\((2751,2501,1377)\) → \((-1,i,e\left(\frac{9}{25}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 4000 }(3111, a) \) \(-1\)\(1\)\(e\left(\frac{77}{100}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{27}{50}\right)\)\(e\left(\frac{11}{100}\right)\)\(e\left(\frac{79}{100}\right)\)\(e\left(\frac{7}{25}\right)\)\(e\left(\frac{73}{100}\right)\)\(e\left(\frac{37}{100}\right)\)\(e\left(\frac{4}{25}\right)\)\(e\left(\frac{31}{100}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4000 }(3111,a) \;\) at \(\;a = \) e.g. 2