sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4000, base_ring=CyclotomicField(100))
M = H._module
chi = DirichletCharacter(H, M([50,25,68]))
pari:[g,chi] = znchar(Mod(231,4000))
\(\chi_{4000}(71,\cdot)\)
\(\chi_{4000}(231,\cdot)\)
\(\chi_{4000}(311,\cdot)\)
\(\chi_{4000}(391,\cdot)\)
\(\chi_{4000}(471,\cdot)\)
\(\chi_{4000}(631,\cdot)\)
\(\chi_{4000}(711,\cdot)\)
\(\chi_{4000}(791,\cdot)\)
\(\chi_{4000}(871,\cdot)\)
\(\chi_{4000}(1031,\cdot)\)
\(\chi_{4000}(1111,\cdot)\)
\(\chi_{4000}(1191,\cdot)\)
\(\chi_{4000}(1271,\cdot)\)
\(\chi_{4000}(1431,\cdot)\)
\(\chi_{4000}(1511,\cdot)\)
\(\chi_{4000}(1591,\cdot)\)
\(\chi_{4000}(1671,\cdot)\)
\(\chi_{4000}(1831,\cdot)\)
\(\chi_{4000}(1911,\cdot)\)
\(\chi_{4000}(1991,\cdot)\)
\(\chi_{4000}(2071,\cdot)\)
\(\chi_{4000}(2231,\cdot)\)
\(\chi_{4000}(2311,\cdot)\)
\(\chi_{4000}(2391,\cdot)\)
\(\chi_{4000}(2471,\cdot)\)
\(\chi_{4000}(2631,\cdot)\)
\(\chi_{4000}(2711,\cdot)\)
\(\chi_{4000}(2791,\cdot)\)
\(\chi_{4000}(2871,\cdot)\)
\(\chi_{4000}(3031,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2751,2501,1377)\) → \((-1,i,e\left(\frac{17}{25}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
| \( \chi_{ 4000 }(231, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1}{100}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{50}\right)\) | \(e\left(\frac{43}{100}\right)\) | \(e\left(\frac{27}{100}\right)\) | \(e\left(\frac{16}{25}\right)\) | \(e\left(\frac{49}{100}\right)\) | \(e\left(\frac{81}{100}\right)\) | \(e\left(\frac{2}{25}\right)\) | \(e\left(\frac{3}{100}\right)\) |
sage:chi.jacobi_sum(n)