# Properties

 Label 3920.fy Modulus $3920$ Conductor $1960$ Order $84$ Real no Primitive no Minimal no Parity even

# Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(3920, base_ring=CyclotomicField(84))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([42,42,63,76]))

sage: chi.galois_orbit()

pari: [g,chi] = znchar(Mod(23,3920))

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$3920$$ Conductor: $$1960$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$84$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from 1960.dq sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $\Q(\zeta_{84})$ Fixed field: Number field defined by a degree 84 polynomial

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$3$$ $$9$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$27$$ $$29$$ $$31$$
$$\chi_{3920}(23,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{13}{84}\right)$$ $$e\left(\frac{13}{42}\right)$$ $$e\left(\frac{4}{21}\right)$$ $$e\left(\frac{17}{28}\right)$$ $$e\left(\frac{31}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{11}{84}\right)$$ $$e\left(\frac{13}{28}\right)$$ $$e\left(\frac{2}{7}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{3920}(247,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{31}{84}\right)$$ $$e\left(\frac{31}{42}\right)$$ $$e\left(\frac{16}{21}\right)$$ $$e\left(\frac{19}{28}\right)$$ $$e\left(\frac{61}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{65}{84}\right)$$ $$e\left(\frac{3}{28}\right)$$ $$e\left(\frac{1}{7}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{3920}(487,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{23}{84}\right)$$ $$e\left(\frac{23}{42}\right)$$ $$e\left(\frac{20}{21}\right)$$ $$e\left(\frac{15}{28}\right)$$ $$e\left(\frac{29}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{13}{84}\right)$$ $$e\left(\frac{23}{28}\right)$$ $$e\left(\frac{3}{7}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{3920}(583,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{37}{84}\right)$$ $$e\left(\frac{37}{42}\right)$$ $$e\left(\frac{13}{21}\right)$$ $$e\left(\frac{1}{28}\right)$$ $$e\left(\frac{43}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{83}{84}\right)$$ $$e\left(\frac{9}{28}\right)$$ $$e\left(\frac{3}{7}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{3920}(807,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{55}{84}\right)$$ $$e\left(\frac{13}{42}\right)$$ $$e\left(\frac{4}{21}\right)$$ $$e\left(\frac{3}{28}\right)$$ $$e\left(\frac{73}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{53}{84}\right)$$ $$e\left(\frac{27}{28}\right)$$ $$e\left(\frac{2}{7}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{3920}(823,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{5}{84}\right)$$ $$e\left(\frac{5}{42}\right)$$ $$e\left(\frac{8}{21}\right)$$ $$e\left(\frac{13}{28}\right)$$ $$e\left(\frac{83}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{43}{84}\right)$$ $$e\left(\frac{5}{28}\right)$$ $$e\left(\frac{4}{7}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{3920}(1143,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{61}{84}\right)$$ $$e\left(\frac{19}{42}\right)$$ $$e\left(\frac{1}{21}\right)$$ $$e\left(\frac{13}{28}\right)$$ $$e\left(\frac{55}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{71}{84}\right)$$ $$e\left(\frac{5}{28}\right)$$ $$e\left(\frac{4}{7}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{3920}(1367,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{79}{84}\right)$$ $$e\left(\frac{37}{42}\right)$$ $$e\left(\frac{13}{21}\right)$$ $$e\left(\frac{15}{28}\right)$$ $$e\left(\frac{1}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{41}{84}\right)$$ $$e\left(\frac{23}{28}\right)$$ $$e\left(\frac{3}{7}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{3920}(1383,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{17}{84}\right)$$ $$e\left(\frac{17}{42}\right)$$ $$e\left(\frac{2}{21}\right)$$ $$e\left(\frac{5}{28}\right)$$ $$e\left(\frac{47}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{79}{84}\right)$$ $$e\left(\frac{17}{28}\right)$$ $$e\left(\frac{1}{7}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{3920}(1607,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{47}{84}\right)$$ $$e\left(\frac{5}{42}\right)$$ $$e\left(\frac{8}{21}\right)$$ $$e\left(\frac{27}{28}\right)$$ $$e\left(\frac{41}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{84}\right)$$ $$e\left(\frac{19}{28}\right)$$ $$e\left(\frac{4}{7}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{3920}(1703,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{1}{84}\right)$$ $$e\left(\frac{1}{42}\right)$$ $$e\left(\frac{10}{21}\right)$$ $$e\left(\frac{25}{28}\right)$$ $$e\left(\frac{67}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{59}{84}\right)$$ $$e\left(\frac{1}{28}\right)$$ $$e\left(\frac{5}{7}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{3920}(1927,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{19}{84}\right)$$ $$e\left(\frac{19}{42}\right)$$ $$e\left(\frac{1}{21}\right)$$ $$e\left(\frac{27}{28}\right)$$ $$e\left(\frac{13}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{29}{84}\right)$$ $$e\left(\frac{19}{28}\right)$$ $$e\left(\frac{4}{7}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{3920}(1943,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{29}{84}\right)$$ $$e\left(\frac{29}{42}\right)$$ $$e\left(\frac{17}{21}\right)$$ $$e\left(\frac{25}{28}\right)$$ $$e\left(\frac{11}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{31}{84}\right)$$ $$e\left(\frac{1}{28}\right)$$ $$e\left(\frac{5}{7}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{3920}(2167,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{59}{84}\right)$$ $$e\left(\frac{17}{42}\right)$$ $$e\left(\frac{2}{21}\right)$$ $$e\left(\frac{19}{28}\right)$$ $$e\left(\frac{5}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{37}{84}\right)$$ $$e\left(\frac{3}{28}\right)$$ $$e\left(\frac{1}{7}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{3920}(2263,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{25}{84}\right)$$ $$e\left(\frac{25}{42}\right)$$ $$e\left(\frac{19}{21}\right)$$ $$e\left(\frac{9}{28}\right)$$ $$e\left(\frac{79}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{47}{84}\right)$$ $$e\left(\frac{25}{28}\right)$$ $$e\left(\frac{6}{7}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{3920}(2487,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{43}{84}\right)$$ $$e\left(\frac{1}{42}\right)$$ $$e\left(\frac{10}{21}\right)$$ $$e\left(\frac{11}{28}\right)$$ $$e\left(\frac{25}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{17}{84}\right)$$ $$e\left(\frac{15}{28}\right)$$ $$e\left(\frac{5}{7}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{3920}(2503,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{41}{84}\right)$$ $$e\left(\frac{41}{42}\right)$$ $$e\left(\frac{11}{21}\right)$$ $$e\left(\frac{17}{28}\right)$$ $$e\left(\frac{59}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{67}{84}\right)$$ $$e\left(\frac{13}{28}\right)$$ $$e\left(\frac{2}{7}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{3920}(2727,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{71}{84}\right)$$ $$e\left(\frac{29}{42}\right)$$ $$e\left(\frac{17}{21}\right)$$ $$e\left(\frac{11}{28}\right)$$ $$e\left(\frac{53}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{73}{84}\right)$$ $$e\left(\frac{15}{28}\right)$$ $$e\left(\frac{5}{7}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{3920}(3047,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{67}{84}\right)$$ $$e\left(\frac{25}{42}\right)$$ $$e\left(\frac{19}{21}\right)$$ $$e\left(\frac{23}{28}\right)$$ $$e\left(\frac{37}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{84}\right)$$ $$e\left(\frac{11}{28}\right)$$ $$e\left(\frac{6}{7}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{3920}(3063,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{53}{84}\right)$$ $$e\left(\frac{11}{42}\right)$$ $$e\left(\frac{5}{21}\right)$$ $$e\left(\frac{9}{28}\right)$$ $$e\left(\frac{23}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{19}{84}\right)$$ $$e\left(\frac{25}{28}\right)$$ $$e\left(\frac{6}{7}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{3920}(3287,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{83}{84}\right)$$ $$e\left(\frac{41}{42}\right)$$ $$e\left(\frac{11}{21}\right)$$ $$e\left(\frac{3}{28}\right)$$ $$e\left(\frac{17}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{25}{84}\right)$$ $$e\left(\frac{27}{28}\right)$$ $$e\left(\frac{2}{7}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{3920}(3383,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{73}{84}\right)$$ $$e\left(\frac{31}{42}\right)$$ $$e\left(\frac{16}{21}\right)$$ $$e\left(\frac{5}{28}\right)$$ $$e\left(\frac{19}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{23}{84}\right)$$ $$e\left(\frac{17}{28}\right)$$ $$e\left(\frac{1}{7}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{3920}(3623,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{65}{84}\right)$$ $$e\left(\frac{23}{42}\right)$$ $$e\left(\frac{20}{21}\right)$$ $$e\left(\frac{1}{28}\right)$$ $$e\left(\frac{71}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{55}{84}\right)$$ $$e\left(\frac{9}{28}\right)$$ $$e\left(\frac{3}{7}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{3920}(3847,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{11}{84}\right)$$ $$e\left(\frac{11}{42}\right)$$ $$e\left(\frac{5}{21}\right)$$ $$e\left(\frac{23}{28}\right)$$ $$e\left(\frac{65}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{61}{84}\right)$$ $$e\left(\frac{11}{28}\right)$$ $$e\left(\frac{6}{7}\right)$$ $$e\left(\frac{1}{6}\right)$$